Learn More
Cyclic ADP-ribose (cADPR) is a natural compound that mobilizes calcium ions in several eukaryotic cells. Although it can lead to the release of calcium ions in T lymphocytes, it has not been firmly established as a second messenger in these cells. Here, using high-performance liquid chromatography analysis, we show that stimulation of the T-cell(More)
Inositol hexakisphosphate (InsP6), the dominant inositol phosphate in insulin-secreting pancreatic beta cells, inhibited the serine-threonine protein phosphatases type 1, type 2A, and type 3 in a concentration-dependent manner. The activity of voltage-gated L-type calcium channels is increased in cells treated with inhibitors of serine-threonine protein(More)
To define the physiological role of IP(3)3-kinase(A) in vivo, we have generated a mouse strain with a null mutation of the IP(3)3-kinase(A) locus by gene targeting. Homozygous mutant mice were fully viable, fertile, apparently normal, and did not show any morphological anomaly in brain sections. In the mutant brain, the IP4 level was significantly decreased(More)
Diphosphoinositol phosphates are a subclass of inositol phosphates possessing one or two high energy diphosphate groups instead of phosphoester substituents of the myo-inositol. Here we describe the enzymes responsible for their synthesis and degradation and how these may be regulated. Formation of diphosphoinositol phosphates in yeast and mammals is driven(More)
Microinjection of human Jurkat T-lymphocytes with nicotinic acid adenine dinucleotide phosphate (NAADP(+)) dose-dependently stimulated intracellular Ca(2+)-signaling. At a concentration of 10 nM NAADP(+) evoked repetitive and long-lasting Ca(2+)-oscillations of low amplitude, whereas at 50 and 100 nM, a rapid and high initial Ca(2+)-peak followed by trains(More)
Inositol-1,4,5-trisphosphate 3-kinase-A (itpka) accumulates in dendritic spines and seems to be critically involved in synaptic plasticity. The protein possesses two functional activities: it phosphorylates inositol-1,4,5-trisphosphate (Ins(1,4,5)P(3)) and regulates actin dynamics by its F-actin bundling activity. To assess the relevance of these activities(More)
Cyclic ADP-ribose (cADPr) is a potent Ca2+-mobilizing natural compound (Lee, H. C., Walseth, T. F., Bratt, G. T., Hayes, R. N., and Clapper, D. L. (1989) J. Biol. Chem. 264, 1608-1615) which has been shown to release Ca2+ from an intracellular store of permeabilized T-lymphocytes (Guse, A. H., Silva, C. P., Emmrich, F., Ashamu, G., Potter, B. V. L., and(More)
The molecular mechanism of action of the mood stabilizer lithium is assumed to involve changes in gene expression leading to neuronal adaptation. The transcription factor CREB (cAMP-responsive element binding protein) regulates the expression of many genes and has been implicated in important brain functions and the action of psychogenic agents. We here(More)
Precisely regulated expression of oncogenes and tumor suppressor genes is essential for normal development, and deregulated expression can lead to cancer. The human N-myc gene normally is expressed in only a subset of fetal epithelial tissues, and its expression is extinguished in all adult tissues except transiently in pre-B lymphocytes. The N-myc gene is(More)
To understand how inositol phosphates (InsP) cause Ca2+ influx, we injected 37 highly purified compounds containing a total of 49 InsP positional isomers into Xenopus oocytes. The eight InsP that stimulated Ca2+ influx were those that had the highest potency at releasing intracellular Ca2+, indicating that their common target was the inositol(More)