Learn More
NADH oxidation in the respiratory chain is coupled to ion translocation across the membrane to build up an electrochemical gradient. The sodium-translocating NADH:quinone oxidoreductase (Na(+)-NQR), a membrane protein complex widespread among pathogenic bacteria, consists of six subunits, NqrA, B, C, D, E and F. To our knowledge, no structural information(More)
The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio cholerae is a membrane protein complex consisting of six different subunits NqrA-NqrF. The major domains of the NqrA and NqrC subunits were heterologously expressed in Escherichia coli and crystallized. The structure of NqrA1-377 was solved in space groups C222₁ and P2₁ by SAD(More)
The Na⁺-translocating NADH:ubiquinone oxidoreductase (Na⁺-NQR) of Vibrio cholerae is a respiratory complex that couples the exergonic oxidation of NADH to the transport of Na⁺ across the cytoplasmic membrane. It is composed of six different subunits, NqrA, NqrB, NqrC, NqrD, NqrE, and NqrF, which harbor FAD, FMN, riboflavin, quinone, and two FeS centers as(More)
Vibrio cholerae is a Gram-negative bacterium that lives in brackish or sea water environments. Strains of V. cholerae carrying the pathogenicity islands infect the human gut and cause the fatal disease cholera. Vibrio cholerae maintains a Na(+) gradient at its cytoplasmic membrane that drives substrate uptake, motility, and efflux of antibiotics. Here, we(More)
  • 1