Learn More
We introduce a new numerical solution method for semi-infinite optimization problems with convex lower level problems. The method is based on a reformulation of the semi-infinite problem as a Stackelberg game and the use of regularized nonlinear complementarity problem functions. This approach leads to central path conditions for the lower level problems,(More)
A semi-infinite programming problem is an optimization problem in which finitely many variables appear in infinitely many constraints. This model naturally arises in an abundant number of applications in different fields of mathematics, economics and engineering. The paper, which intends to make a compromise between an introduction and a survey, treats the(More)
The paper studies the connections and differences between bilevel problems (BL) and generalized semi-infinite problems (GSIP). Under natural assumptions (GSIP) can be seen as a special case of a (BL). We consider the so-called reduction approach for (BL) and (GSIP) leading to optimality conditions and Newtontype methods for solving the problems. We show by(More)
  • Georg Still
  • European Journal of Operational Research
  • 1999
Generalized semi-infinite optimization problems (GSIP) are considered. The difference between GSIP and standard semi-infinite problems (SIP) is illustrated by examples. By applying the ’Reduction Ansatz’, optimality conditions for GSIP are derived. Numerical methods for solving GSIP are considered in comparison with methods for SIP. From a theoretical and a(More)
Given a complete undirected graph with the nodes partitioned into m node sets called clusters, the Generalized Minimum Spanning Tree problem denoted by GMST is to find a minimum-cost tree which includes exactly one node from each cluster. It is known that the GMST problem is NP-hard and even finding a near optimal solution is NP-hard. We give an(More)
In this note we give an elementary proof of the Fritz-John and Karush–Kuhn–Tucker conditions for nonlinear finite dimensional programming problems with equality and/or inequality constraints. The proof avoids the implicit function theorem usually applied when dealing with equality constraints and uses a generalization of Farkas lemma and the(More)
No part of this work may be reproduced by print, photography or any other means without the permission in writing from the author. PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Twente, op gezag van de rector magnificus, prof. dr. Contents Acknowledgement iii Preface v 1 Introduction 1 1.1 History of integral graphs and basic(More)