Katja S Kroker4
Jens Moreth1
Cornelia Dorner-Ciossek1
Learn More
Brain nicotinic acetylcholine receptors are involved in several neuropsychiatric disorders, e.g. Alzheimer's and Parkinson's diseases, Tourette's syndrome, schizophrenia, depression, autism, attention deficit hyperactivity disorder, and anxiety. Currently, approaches selectively targeting the activation of specific nicotinic acetylcholine receptors are in(More)
Ca2+ entry through store-operated Ca2+release-activated Ca2+ (CRAC) channels is essential for T-cell activation and proliferation. Recently, it has been shown that 3,5-bistrifluoromethyl pyrazole (BTP) derivatives are specific inhibitors of Ca2+-dependent transcriptional activity in T-cells (Trevillyan, J. M., Chiou, X. G., Chen, Y. W., Ballaron, S. J.,(More)
Donepezil is the current standard symptomatic treatment of mild-to-moderate Alzheimer's disease (AD) patients. It aims to compensate for the deficit in cholinergic neurotransmission by blocking acetylcholinesterase (AChE) and thus increases the concentration of extracellular acetylcholine. However, experience from clinical practice demonstrated that AChE(More)
As nicotinic acetylcholine receptor (nAChR) agonists directly address cholinergic neurotransmission with potential impact on glutamatergic function, they are considered as potential new symptomatic treatment options for Alzheimer's disease compared to the indirectly operating acetylcholinesterase inhibitors such as the current gold standard donepezil. In(More)
A major challenge in neuroscience is identifying the cellular and molecular processes underlying learning and memory formation. In the past decades, significant progress has been made in understanding cellular and synaptic mechanisms underlying hippocampal learning and memory using long-term potentiation (LTP) experiments in brain slices as a model system.(More)
Conflicting findings are reported in the literature about the involvement of the mGlu5 receptor in hippocampal long-term potentiation (LTP), which might be a consequence of different sub-types of LTP induced by the investigators due to the specific experimental conditions used. A comparable controversy came up in the past concerning the influence of(More)
In the present work we develop a predictive QSAR model for the blockade of the hERG channel. Additionally, this specific end point is used as a test scenario to develop and evaluate several techniques for fusing predictions from multiple regression models. hERG inhibition models which are presented here are based on a combined data set of roughly 550(More)
  • 1