Learn More
Electronic structure calculations have become an indispensable tool in many areas of materials science and quantum chemistry. Even though the Kohn-Sham formulation of the density-functional theory (DFT) simplifies the many-body problem significantly, one is still confronted with several numerical challenges. In this article we present the projector(More)
The frequency of infection in 197 patients undergoing elective colorectal surgery and having either no blood transfusion, transfusion with whole blood, or filtered blood free from leucocytes and platelets was investigated in a prospective randomized trial. Natural killer cell function was measured before operation and 3, 7 and 30 days after surgery in 60(More)
The electronic nature of low-barrier hydrogen bonds (LBHBs) in enzymatic reactions is discussed based on combined low temperature neutron and x-ray diffraction experiments and on high level ab initio calculations by using the model substrate benzoylacetone. This molecule has a LBHB, as the intramolecular hydrogen bond is described by a double-well potential(More)
An automated band structure calculation based on the inorganic crystal structure database and the augmented plane wave method for electronic structure calculations is presented. Using a rigid band approach and semiclassic Boltzmann theory the band structures are analyzed and a large number of compounds are screened for potential interesting thermoelectric(More)
In a prospective randomized trial the frequency of infectious complications and natural killer cell function were investigated in 197 patients undergoing elective colorectal surgery and having either no blood transfusion (n = 93), transfusion with whole blood (n = 56), or filtered blood free from leucocytes (n = 48). Postoperative infections developed in 13(More)
By means of high-resolution scanning tunneling microscopy (STM), we have revealed unprecedented details about the intermediate steps for a surface-catalyzed reaction. Specifically, we studied the oxidation of H adatoms by O(2) molecules on the rutile TiO(2)(110) surface. O(2) adsorbs and successively reacts with the H adatoms, resulting in the formation of(More)
Titanium dioxide (TiO2) has a number of uses in catalysis, photochemistry, and sensing that are linked to the reducibility of the oxide. Usually, bridging oxygen (Obr) vacancies are assumed to cause the Ti3d defect state in the band gap of rutile TiO2(110). From high-resolution scanning tunneling microscopy and photoelectron spectroscopy measurements, we(More)
Tin(II)sulfide, SnS, is a commercially viable and environmentally friendly thermoelectric material. Recently it was shown how the carrier concentration and the thermoelectric power factor can be optimized by Ag-doping in a sulphur rich environment. Theoretical calculations lead to a fairly accurate estimation of the carrier concentration, whereas the(More)
Accelerating the discovery of new materials is crucial for realizing the vision of need-driven materials development. In the present study we employ an integrated computational and experimental approach to search for new thermoelectric materials. High-throughput first principles calculations of thermoelectric transport coefficients are used to screen(More)