Learn More
We have studied the effects of different neurotrophins on the survival and proliferation of rat cerebellar granule cells in culture. These neurons express trkB and trkC, the putative neuronal receptors for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) respectively. Binding studies using iodinated BDNF and NT-3 demonstrated that both(More)
The correlation between functional and structural neuronal plasticity is by now well documented. However, the molecular mechanisms translating patterns of neuronal activity into specific changes in the structure of neurons remain unclear. Neurotrophins can be released in an activity-dependent manner, and they are capable of controlling both neuronal(More)
The neurotrophins nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 promote the survival of subpopulations of vertebrate neurons in vitro, but so far only nerve growth factor has been demonstrated to be essential for normal neuronal development; no neurotrophin has previously been shown to function in normal glial(More)
Cholinergic neurons innervating cortical structures are among the most affected neuronal populations in Alzheimer's disease. In rodents, they express high levels of the neurotrophin receptor p75NTR. We have analyzed cholinergic septohippocampal neurons of the medial septal nucleus in p75exonIII (partial p75NTR knock-out) and p75exonIV (complete p75NTR(More)
Neurotrophins have long been known to promote the survival and differentiation of vertebrate neurons. However, these growth factors can also induce cell death through the p75 neurotrophin receptor (p75(NTR)), a member of the tumor necrosis factor receptor superfamily. Consistent with a function in controlling the survival and process formation of neurons,(More)
The neurotrophic proteins BDNF and NGF are related in their primary structures, and both have high- and low-affinity receptors on their responsive neurons. In this study, we investigate the extent to which these receptors can discriminate between BDNF and NGF. We found that a 1000-fold excess of the heterologous ligand is needed to reduce binding to the(More)
Little is known how social interaction, if offered as an alternative to drug consumption, affects neural circuits involved in drug reinforcement and substance dependence. Conditioned place preference (CPP) for cocaine (15 mg/kg i.p.) or social interaction (15 minutes) as an alternative stimulus was investigated in male Sprague-Dawley rats. Four social(More)
The trkB gene codes for a receptor tyrosine kinase, which is essential for the development of the peripheral nervous system. This receptor can be activated by three different neurotrophins: BDNF, NT-4/5 and NT-3. The extracellular domain of trkB was found to be encoded in 10 exons corresponding to receptor subdomains previously identified on the basis of(More)
Neurotrophins influence the epigenetic shaping of the vertebrate nervous system by regulating neuronal numbers during development and synaptic plasticity. Here we attempt to determine whether these growth factors can also regulate neurotransmitter plasticity. As a model system we used the selection between noradrenergic and cholinergic neurotransmission by(More)