Geon-Hyoung An

  • Citations Per Year
Learn More
Activated mesoporous carbon nanofibers (AMCNFs) are synthesized by a sequential process of electrospinning, water etching-assisted templating, and acid treatment. Their morphologies, crystal structures, melting behavior, chemical bonding states, surface properties, and electrochemical performance are investigated for three different polyacrylonitrile (PAN)(More)
The ability to rationally design and manipulate the interfacial structure in lithium ion batteries (LIBs) is of utmost technological importance for achieving desired performance requirements as it provides synergistic effects to the electrochemical properties and cycling stability of electrode materials. However, despite considerable efforts and progress(More)
Carbon-encapsulated hollow porous vanadium-oxide (C/HPV2O5) nanofibers have been fabricated using electrospinning and postcalcination. By optimized postcalcination of vanadium-nitride and carbon-nanofiber composites at 400 °C for 30 min, we synthesized a unique architecture electrode with interior void spaces and well-defined pores as well as a uniform(More)
Novel supports for the dispersion of Pt electrocatalysts in fuel cells are constantly being developed in order to improve the electrochemical performance and reduce the cost. The electrocatalytic activity and stability in fuel cells largely depend on the surface morphology and structure of the support. In this study, Ru and RuO2 nanofibers prepared by(More)
Metal oxides as anode materials for Li-ion batteries (LIBs) are of significant interest to many potential technologies because of their high theoretical capacity value, low price, and environmentally friendly features. In spite of these considerable benefits and ongoing progress in the field, momentous challenges exist, related with structural(More)
Carbon and metal oxide composites have received considerable attention as anode materials for Li-ion batteries (LIBs) owing to their excellent cycling stability and high specific capacity based on the chemical and physical stability of carbon and the high theoretical specific capacity of metal oxides. However, efforts to obtain ultrafast cycling stability(More)
Four different types of electrodes for high-performance electrochemical capacitors were prepared using electrospinning method and/or impregnation methods: (1) conventional carbon nanofibres (CNF) supports, and CNFs decorated with (2) MnO2 nanophases, (3) multi-layer MnO2/Pt nanophases, and (4) composite MnO2 and Pt nanophases. Their morphological,(More)
  • 1