Geoffrey S Findlay

Learn More
Glycine receptors (GlyRs) are pentameric ligand-gated ion channels that inhibit neurotransmission in the adult brainstem and spinal cord. GlyR function is potentiated by ethanol in vitro, and a mutant GlyR subunit alpha(1)(S267Q) is insensitive to the potentiating effects of ethanol. To test the importance of GlyR for the actions of ethanol in vivo, we(More)
Mice lacking either the alpha1 or beta 2 subunit of the GABAA receptor were tested for ethanol, saccharin, or quinine consumption, ethanol-conditioned place preference, ethanol-conditioned taste aversion, ethanol-simulated motor activity, and handling-induced seizures following chronic consumption of an ethanol liquid diet. The alpha1 null mutants showed(More)
This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The chairs were R. Adron Harris and Susumu Ueno. The presentations were (1) Protein kinase Cepsilon-regulated sensitivity of gamma-aminobutyric acid type A (GABAA) receptors to allosteric agonists, by Robert O. Messing, A. M. Sanchez-Perez, C. W. Hodge, T.(More)
Strychnine-sensitive glycine receptors (GlyRs) inhibit neurotransmission in the spinal cord and brainstem. To better define the function of this receptor in vivo, we constructed a point mutation that impairs receptor function in the alpha1-subunit and compared these knock-in mice to oscillator (spdot) mice lacking functional GlyR alpha1-subunits. Mutation(More)
BACKGROUND It is commonly believed that the mesolimbic dopamine (DA) system participates in the etiology of alcoholism. One of the most important regulators of DA synaptic transmission is the DA transporter (DAT). We examined the effects of the genetic reduction or deletion of DAT on voluntary ethanol consumption and ethanol-induced sedation. METHODS(More)
Tryptophan substitutions were made in the second transmembrane domain of the gamma-aminobutyric acid(A) (GABA(A)) receptor alpha and beta subunits and the resulting mutant receptors, containing alpha(2)(S270W) and/or beta(1)(S265W), were expressed in Xenopus oocytes. Mutation of either or both subunits resulted in receptors that exhibited enhanced(More)
Glycine receptors (GlyR) are ligand-gated ion channels that inhibit neurotransmission in the spinal cord and brainstem, and mutations in GlyR can cause the human disease hyperekplexia, which is characterized by elevated startle responses. Recently, the GlyR alpha1S267Q mutation was shown to disrupt normal GlyR function, and knock-in mice harboring this(More)
Tryptophan substitutions were made in the second transmembrane domain of the gamma-aminobutyric acid(A) (GABAA) receptor alpha and beta subunits and the resulting mutant receptors, containing alpha2(S270W) and/or beta1 (S265W), were expressed in Xenopus oocytes. Mutation of either or both subunits resulted in receptors that exhibited enhanced sensitivity to(More)
  • 1