Geoffrey D Clapp

  • Citations Per Year
Learn More
Recently, there has been significant activity in the mathematical community, aimed at developing quantitative tools for studying leukemia and lymphoma. Mathematical models have been applied to evaluate existing therapies and to suggest novel therapies. This article reviews the recent contributions of mathematical modeling to leukemia and lymphoma research.(More)
Sensory input to the lamprey central pattern generator (CPG) for locomotion is known to have a significant role in modulating lamprey swimming. Lamprey CPGs are known to have the ability to entrain to a bending stimulus, that is, in the presence of a rhythmic signal, the CPG will change its frequency to match the stimulus frequency. Bending experiments in(More)
Many chronic myelogenous leukemia (CML) patients in chronic phase who respond well to imatinib therapy show fluctuations in their leukemic loads in the long-term. We developed a mathematical model of CML that incorporates the intervention of an autologous immune response. Our results suggest that the patient's immune system plays a crucial role in imatinib(More)
Imatinib and other tyrosine kinase inhibitors (TKI) have improved treatment of chronic myelogenous leukemia (CML); however, most patients are not cured. Deeper mechanistic understanding may improve TKI combination therapies to better control the residual leukemic cell population. In analyzing our patients' data, we found that many patients who otherwise(More)
We describe here a simple model for the interaction between leukemic cells and the autologous immune response in chronic phase chronic myelogenous leukemia (CML). This model is a simplified version of the model we proposed in Clapp et al. (Cancer Res 75:4053-4062, 2015). Our simplification is based on the observation that certain key characteristics of the(More)
  • 1