Learn More
Glioblastoma multiforme (GBM) is the most common adult primary brain tumor and is comprised of a heterogeneous population of cells. It is unclear which cells within the tumor mass are responsible for tumor initiation and maintenance. In this study, we report that brain tumor stem cells can be identified from adult GBMs. These tumor stem cells form(More)
BACKGROUND Recently, a small population of cancer stem cells in adult and pediatric brain tumors has been identified. Some evidence has suggested that CD133 is a marker for a subset of leukemia and glioblastoma cancer stem cells. Especially, CD133 positive cells isolated from human glioblastoma may initiate tumors and represent novel targets for(More)
Neural progenitor-like cells have been isolated from bone marrow and the cells have the ability of tracking intracranial tumor. However, the capacity of the cells to deliver molecules for activating immune response against intracranial tumor and the identity of cellular and molecular factors that are involved in such immune responses have yet to be(More)
Cancer vaccine trials have failed to yield robust immune-correlated clinical improvements as observed in animal models, fueling controversy over the utility of human cancer vaccines. Therapeutic vaccination represents an intriguing additional therapy for glioblastoma multiforme (GBM; grade 4 glioma), which has a dismal prognosis and treatment response, but(More)
Our pilot study using miRNA arrays found that miRNA-29c (miR-29c) is differentially expressed in the paired low-metastatic lung cancer cell line 95C compared to the high-metastatic lung cancer cell line 95D. Bioinformatics analysis shows that integrin β1 and matrix metalloproteinase 2 (MMP2) could be important target genes of miR-29c. Therefore, we(More)
The observation of similarities between the self-renewal mechanisms of stem cells and cancer cells has led to the new concept of the cancer stem cell. In cases of leukemia, multiple myeloma, and breast cancer, cells with a high selfrenewal potential have been identified. Furthermore, investigators have shown these cells' ability to drive the formation and(More)
Recent evidence has demonstrated that neural stem cells (NSC) can be expanded from a variety of sources, including embryos, fetuses, and adult bone marrow and brain tissue. We have previously reported the generation of adult rat bone marrow-derived cellular spheres that are morphologically and phenotypically similar to neurospheres derived from brain NSC.(More)