Learn More
BACKGROUND & AIMS The 7α-dehydroxylation of primary bile acids (BAs), chenodeoxycholic (CDCA) and cholic acid (CA) into the secondary BAs, lithocholic (LCA) and deoxycholic acid (DCA), is a key function of the gut microbiota. We aimed at studying the linkage between fecal BAs and gut microbiota in cirrhosis since this could help understand cirrhosis(More)
OBJECTIVE Liver is the major organ responsible for the final elimination of cholesterol from the body either as biliary cholesterol or as bile acids. Intracellular hydrolysis of lipoprotein-derived cholesteryl esters (CEs) is essential to generate the free cholesterol required for this process. Earlier, we demonstrated that overexpression of human CE(More)
We developed a highly sensitive and quantitative method to detect bile acid 3-sulfates in human urine employing liquid chromatography/electrospray ionization-tandem mass spectrometry. This method allows simultaneous analysis of bile acid 3-sulfates, including nonamidated, glycine-, and taurine-conjugated bile acids, cholic acid (CA), chenodeoxycholic acid(More)
The chemical synthesis of 3beta,7beta-dihydroxy-5-cholen-24-oic acid, triply conjugated by sulfuric acid at C-3, by N-acetylglucosamine (GlcNAc) at C-7, and by glycine or taurine at C-24, is described. These are unusual, major metabolites of bile acid found to be excreted in the urine of a patient with Niemann-Pick disease type C1. Analogous(More)
A method for the synthesis of Delta(22)-beta-muricholic acid (Delta(22)-beta-MCA), (22E)-3 alpha,6 beta,7 beta-trihydroxy-5 beta-chol-22-en-24-oic acid, and its taurine and glycine conjugates (Delta(22)-beta-muricholyltaurine and Delta(22)-beta-muricholylglycine) is described. The key intermediate, 3 alpha,6 beta,7 beta-triformyloxy-23,24-dinor-5(More)
Cytosolic sulfotransferase 2B1b (SULT2B1b) catalyzes the sulfation of 3β-hydroxysteroids and functions as a selective cholesterol and oxysterol sulfotransferase. Activation of liver X receptors (LXRs) by oxysterols has been known to be an antiproliferative factor. Overexpression of SULT2B1b impairs LXR's response to oxysterols, by which it regulates lipid(More)
Alcohol abuse with/without cirrhosis is associated with an impaired gut barrier and inflammation. Gut microbiota can transform primary bile acids (BA) to secondary BAs, which can adversely impact the gut barrier. The purpose of this study was to define the effect of active alcohol intake on fecal BA levels and ileal and colonic inflammation in cirrhosis.(More)
BACKGROUND Safety of individual probiotic strains approved under Investigational New Drug (IND) policies in cirrhosis with minimal hepatic encephalopathy (MHE) is not clear. AIM The primary aim of this phase I study was to evaluate the safety, tolerability of probiotic Lactobacillus GG (LGG) compared to placebo, while secondary ones were to explore its(More)
Experiments were performed to compare the regioselective hydroxylation of the isopropyl C-H bond at C-25 in 5alpha-cholestan-3beta-yl acetate by in situ generated dimethyldioxirane, methyl(trifluoromethyl)dioxirane, hexafluoro(dimethyl)dioxirane or ethyl(trifluoromethyl)dioxirane (ETDO). The dioxiranes were generated from the corresponding ketones and(More)
UNLABELLED Oxysterols are well known as physiological ligands of liver X receptors (LXRs). Oxysterols, 25-hydroxycholesterol (25HC) and 27-hydroxycholesterol as endogenous ligands of LXRs, suppress cell proliferation via LXRs signaling pathway. Recent reports have shown that sulfated oxysterol, 5-cholesten-3β-25-diol-3-sulfate (25HC3S) as LXRs antagonist,(More)