Gennaro Chiappetta

Learn More
The cyclin-dependent kinase inhibitor p27(kip1) is a putative tumor suppressor for human cancer. The mechanism underlying p27(kip1) deregulation in human cancer is, however, poorly understood. We demonstrate that the serine/threonine kinase Akt regulates cell proliferation in breast cancer cells by preventing p27(kip1)-mediated growth arrest. Threonine 157(More)
MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in a wide range of basic processes such as cell proliferation, development, apoptosis and stress response. It has recently been found that they are also abnormally expressed in many types of human cancer. We analyzed the genome-wide miRNA expression profile in human thyroid papillary(More)
NF-kappaB is constitutively activated in primary human thyroid tumors, particularly in those of anaplastic type. The inhibition of NF-kappaB activity in the human anaplastic thyroid carcinoma cell line, FRO, leads to an increased susceptibility to chemotherapeutic drug-induced apoptosis and to the blockage of their ability to form tumors in nude mice. To(More)
Malignant tumors of the thyroid gland vary considerably in aggressiveness, ranging from a well-differentiated, clinically indolent, to an undifferentiated, often lethal phenotype. Undifferentiated (anaplastic) thyroid tumors are supposed to be derived, through a process of progression, from previously differentiated neoplasms. A common genetic alteration in(More)
BACKGROUND In the USA, about 30 200 well-differentiated thyroid carcinomas were diagnosed in 2007, but the prevalence of thyroid nodules is much higher (about 5% of the adult population). Unfortunately, the preoperative characterisation of follicular thyroid nodules is still a challenge, and many benign lesions, which remain indeterminate after fine-needle(More)
The tall-cell variant (TCV) of papillary thyroid carcinoma (PTC), characterized by tall cells bearing an oxyphilic cytoplasm, is more clinically aggressive than conventional PTC. RET tyrosine kinase rearrangements, which represent the most frequent genetic alteration in PTC, lead to the recombination of RET with heterologous genes to generate chimeric(More)
RET/PTC oncogene activation occurs in about 20% of human thyroid papillary carcinomas. However, it is not known yet whether it is an early or late event in the process of thyroid carcinogenesis. Here we demonstrate, by using a combined immunohistochemical and reverse transcriptase-polymerase chain reaction based approach, that RET/PTC activation is present(More)
Placenta growth factor (PlGF) and vascular endothelial growth factor (VEGF) represent two closely related angiogenic growth factors active as homodimers or heterodimers. Since goiters of the thyroid gland are extremely hypervascular, we investigated the expression of PlGF, VEGF and their receptors, Flt-1 and Flk-1/KDR, in a small panel of human goiters from(More)
Somatic mutation (E17K) that constitutively activates the protein kinase AKT1 has been found in human cancer patients. We determined the role of the E17K mutation of AKT1 in lung cancer, through sequencing of AKT1 exon 4 in 105 resected, clinically annotated non-small cell lung cancer specimens. We detected a missense mutations G-->A transition at(More)
Familial adenomatous polyposis (FAP) is caused by germ-line mutations of the apc gene, and it is associated with an increased risk of developing papillary thyroid carcinomas. We have previously reported that a significant fraction of sporadic human papillary thyroid carcinomas is characterized by gene rearrangements affecting the ret protooncogene. These(More)