Gennady Mil'nikov

  • Citations Per Year
Learn More
We consider a problem of calculating both thermal and microcanonical rate constants for nonadiabatic chemical reactions. Instead of using the conventional transition state theory, we use a generalized seam surface and introduce a concept of a coordinate dependent effective nonadiabatic transition probability based on the Zhu-Nakamura theory which can treat(More)
The dynamics of the O(1D) + HCl --> OH + Cl(2P) reaction are investigated by a crossed molecular beam ion-imaging method and quasiclassical trajectory calculations on the three ab initio potential energy surfaces, the ground 1(1)A' and two excited (1(1)A'' and 2(1)A') states. The scattering experiment was carried out at collision energies of 4.2, 4.5, and(More)
We have theoretically investigated the effects of random discrete distribution of implanted and annealed arsenic (As) atoms on device characteristics of silicon nanowire (Si NW) transistors. Kinetic Monte Carlo simulation is used for generating realistic random distribution of active As atoms in Si NWs. The active As distributions obtained through the(More)
Recently, we have proposed a new method for device simulations which allows for splitting the device area into a set of independent elements and computing all the physical observables in the form of local spectral representation. The shape of the device elements and their internal coordinate representation are arbitrary which offers a natural way to treat(More)
The paper presents a method for quantum transport simulations in nanowire (NW) MOSFETs with inelastic scattering processes incorporated. An atomistic tight-binding Hamiltonian with realistic electron-phonon interaction is transformed into an equivalent low-dimensional transport model which can be easily used in full-scaled NEGF simulations. The utility of(More)
We develop the instanton theory for calculating the tunneling splitting of excited states. For the case of low vibrational quantum states we derive a canonically invariant formula which is applicable to a multidimensional system of arbitrary Riemannian metric. The effect of multidimensionality in relation to the vibrational excitation is explained in terms(More)
A practical and accurate semiclassical method for calculating the tunneling splitting of the ground state in polyatomic molecules is presented based on a recent version of the instanton theory [J. Chem. Phys. 115, 6881 (2001)]. The method uses ab initio quantum chemical data for the potential energy surface without any concomitant extrapolation and requires(More)
We construct a low-dimensional representation of a tight-binding model to be used in the self-consistent device simulation. The method combines the original atomic orbitals of the nanowire device into a small basis set which reproduces the band structure and all the relevant electronic states. The basis representation greatly reduces the numerical burden(More)