Gennady Bachman

Learn More
Ternary cyclotomic polynomials are polynomials of the form Φpqr(z) = ∏ ρ(z − ρ), where p < q < r are odd primes and the product is taken over all primitive pqr-th roots of unity ρ. We show that for every p there exists an infinite family of polynomials Φpqr such that the set of coefficients of each of these polynomials coincides with the set of integers in(More)
Taking a combinatorial point of view on cyclotomic polynomials leads to a larger class of polynomials we shall call the inclusion-exclusion polynomials. This gives a more appropriate setting for certain types of questions about the coefficients of these polynomials. After establishing some basic properties of inclusion-exclusion polynomials we turn to a(More)