Geneviève Morrow

Learn More
Heat shock proteins (Hsp) are involved in protein folding, transport and stress resistance. Studies reporting an increased mRNA level of hsp genes in aged Drosophila suggest that expression of Hsp might be beneficial in preventing damages induced by aging. Because oxidative damage is often observed in aged organisms and mitochondria are sensitive to(More)
Aging is a complex process accompanied by a decreased capacity to tolerate and respond to various stresses. Heat shock proteins as part of cell defense mechanisms are up-regulated following stress. In Drosophila, the mitochondrial Hsp22 is preferentially up-regulated in aged flies. Its over-expression results in an extension of lifespan and an increased(More)
Aging is characterized by the accumulation of dysfunctional mitochondria. Since these organelles are involved in many important cellular processes, different mechanisms exist to maintain their integrity. Among them is the mitochondrial unfolding protein response, which triggers the expression of a set of proteins aimed at re-establishing mitochondrial(More)
The accumulation of oxidative damage in mitochondrial proteins, membranes and DNA during ageing is supposed to lead to mitochondrial inactivation, downstream molecular impairments and subsequent decline of biological systems. In a quantitative study investigating the age-related changes of mitochondrial proteins on the level of oxidative posttranslational(More)
The workshop was entitled “The Small HSP World” and had the mission to bring together investigators studying small heat shock proteins (sHSPs). It was held at Le Bonne Entente in Quebec City (Quebec, Canada) from October 2 to October 5 2014. Forty-four scientists from 14 different countries attended this workshop of the Cell Stress Society International(More)
Dystonia1 (DYT1) dystonia is caused by a glutamic acid deletion (ΔE) mutation in the gene encoding Torsin A in humans (HTorA). To investigate the unknown molecular and cellular mechanisms underlying DYT1 dystonia, we performed an unbiased proteomic analysis. We found that the amount of proteins and transcripts of an Endoplasmic reticulum (ER) resident(More)
Mitochondria are involved in many key cellular processes and therefore need to rely on good protein quality control (PQC). Three types of mechanisms are in place to insure mitochondrial protein integrity: reactive oxygen species scavenging by anti-oxidant enzymes, protein folding/degradation by molecular chaperones and proteases and clearance of defective(More)
Hereditary Tyrosinemia type 1 (HT1) is a metabolic liver disease caused by genetic defects of fumarylacetoacetate hydrolase (FAH), an enzyme necessary to complete the breakdown of tyrosine. The severe hepatic dysfunction caused by the lack of this enzyme is prevented by the therapeutic use of NTBC (2-[2-nitro-4-(trifluoromethyl)benzoyl](More)
Hsp22 is a small mitochondrial heat shock protein (sHSP) preferentially up-regulated during aging in Drosophila melanogaster. Its developmental expression is strictly regulated and it is rapidly induced in conditions of stress. Hsp22 is one of the few sHSP to be localized inside mitochondria, and is the first sHSP to be involved in the mitochondrial(More)
The human fumarylacetoacetate hydrolase (FAH) domain-containing protein 1 (FAHD1) is part of the FAH protein superfamily, but its enzymatic function is unknown. In the quest for a putative enzymatic function of FAHD1, we found that FAHD1 exhibits acylpyruvase activity, demonstrated by the hydrolysis of acetylpyruvate and fumarylpyruvate in vitro, whereas(More)