Geneviève Desjardins

  • Citations Per Year
Learn More
The Neurospora VS ribozyme is a small nucleolytic ribozyme with unique primary, secondary and global tertiary structures, which displays mechanistic similarities to the hairpin ribozyme. Here, we determined the high-resolution NMR structure of a stem-loop VI fragment containing the A730 internal loop, which forms part of the active site. In the presence of(More)
In the Neurospora VS ribozyme, magnesium ions facilitate formation of a loop-loop interaction between stem-loops I and V, which is important for recognition and activation of the stem-loop I substrate. Here, we present the high-resolution NMR structure of stem-loop V (SL5) in the presence of Mg(2+) (SL5(Mg)) and demonstrate that Mg(2+) induces a(More)
Substrate recognition by the VS ribozyme involves a magnesium-dependent loop/loop interaction between the SLI substrate and the SLV hairpin from the catalytic domain. Recent NMR studies of SLV demonstrated that magnesium ions stabilize a U-turn loop structure and trigger a conformational change for the extruded loop residue U700, suggesting a role for U700(More)
The E26 transformation-specific (Ets-1) transcription factor is autoinhibited by a conformationally disordered serine-rich region (SRR) that transiently interacts with its DNA-binding ETS domain. In response to calcium signaling, autoinhibition is reinforced by calmodulin-dependent kinase II phosphorylation of serines within the SRR. Using mutagenesis and(More)
The affinity of the Ets-1 transcription factor for DNA is autoinhibited by an intrinsically disordered serine-rich region (SRR) and a helical inhibitory module (IM) appended to its winged helix-turn-helix ETS domain. Using NMR spectroscopy, we investigated how Ets-1 recognizes specific versus nonspecific DNA, with a focus on the roles of protein dynamics(More)
  • 1