Geneviève Almouzni

Learn More
Deposition of the major histone H3 (H3.1) is coupled to DNA synthesis during DNA replication and possibly DNA repair, whereas histone variant H3.3 serves as the replacement variant for the DNA-synthesis-independent deposition pathway. To address how histones H3.1 and H3.3 are deposited into chromatin through distinct pathways, we have purified deposition(More)
A unique feature of the germ cell lineage is the generation of totipotency. A critical event in this context is DNA demethylation and the erasure of parental imprints in mouse primordial germ cells (PGCs) on embryonic day 11.5 (E11.5) after they enter into the developing gonads. Little is yet known about the mechanism involved, except that it is apparently(More)
Post-translational modification of histone tails is thought to modulate higher-order chromatin structure. Combinations of modifications including acetylation, phosphorylation and methylation have been proposed to provide marks recognized by specific proteins. This is exemplified, in both mammalian cells and fission yeast, by transcriptionally silent(More)
DNA replication in eukaryotes requires nucleosome disruption ahead of the replication fork and reassembly behind. An unresolved issue concerns how histone dynamics are coordinated with fork progression to maintain chromosomal stability. Here, we characterize a complex in which the human histone chaperone Asf1 and MCM2-7, the putative replicative helicase,(More)
Heterochromatin maintenance is crucial for the clonal inheritance of cell identity, to ensure the proper segregation of chromosomes and the regulation of gene expression. Although it is architecturally stable, heterochromatin has to be flexible to cope with disrupting events such as replication. Recent progress has shed light on the paradoxical properties(More)
Heterochromatin is thought to play a critical role for centromeric function. However, the respective contributions of the distinct repetitive sequences found in these regions, such as minor and major satellites in the mouse, have remained largely unsolved. We show that these centric and pericentric repeats on the chromosomes have distinct heterochromatic(More)
Histone posttranslational modifications (PTMs) and sequence variants regulate genome function. Although accumulating evidence links particular PTM patterns with specific genomic loci, our knowledge concerning where and when these PTMs are imposed remains limited. Here, we find that lysine methylation is absent prior to histone incorporation into chromatin,(More)
Studies that concern the mechanism of DNA replication have provided a major framework for understanding genetic transmission through multiple cell cycles. Recent work has begun to gain insight into possible means to ensure the stable transmission of information beyond just DNA, and has led to the concept of epigenetic inheritance. Considering(More)
Sensing DNA damage is crucial for the maintenance of genomic integrity and cell cycle progression. The participation of chromatin in these events is becoming of increasing interest. We show that the presence of single-strand breaks and gaps, formed either directly or during DNA damage processing, can trigger the propagation of nucleosomal arrays. This(More)
Establishment of a proper chromatin landscape is central to genome function. Here, we explain H3 variant distribution by specific targeting and dynamics of deposition involving the CAF-1 and HIRA histone chaperones. Impairing replicative H3.1 incorporation via CAF-1 enables an alternative H3.3 deposition at replication sites via HIRA. Conversely, the H3.3(More)