Learn More
Phenolics were extracted from litchi fruit pericarp (LFP) tissues, purified and their antioxidant properties analyzed. LFP phenolics strongly inhibited linoleic acid oxidation and exhibited a dose-dependent free-radical scavenging activity against alpha,alpha-diphenyl-beta-picrylhydrazyl (DPPH*) and hydroxyl radicals and superoxide anions. The degradation(More)
A new method for determination of etimicin's (ETM) purity and content is developed by liquid chromatography (LC) and pulsed amperometric detection (PAD). A reversed-phase ion-pair LC method with pulsed amperometric detection on a gold electrode after post-added NaOH is described. The mobile phase consisted of an aqueous solution containing 0.033 mol L(-1)(More)
UNLABELLED Hydrogen sulfide (H2S), well known for its toxic properties, has recently become a research focus in bacteria, in part because it has been found to prevent oxidative stress caused by treatment with some antibiotics. H2S has the ability to scavenge reactive oxygen species (ROS), thus preventing oxidative stress, but it is also toxic, leading to(More)
Shewanella oneidensis, renowned for its remarkable respiratory abilities, inhabit redox-stratified environments prone to reactive oxygen species (ROS)formation. Two major oxidative stress regulators,analogues of OxyR and OhrR, specifically respond to H(2)O(2) and organic peroxides (OP), respectively, are encoded in the genome based on sequence comparison to(More)
Shewanella thrives in redox-stratified environments where accumulation of H2O2 becomes inevitable because of the chemical oxidation of reduced metals, sulfur species, or organic molecules. As a research model, the representative species Shewanella oneidensis has been extensively studied for its response to various stresses. However, little progress has been(More)
Hydrogen sulfide (H2S) has been recognized as a physiological mediator with a variety of functions across all domains of life. In this study, mechanisms of endogenous H2S generation in Shewanella oneidensis were investigated. As a research model with highly diverse anaerobic respiratory pathways, the microorganism is able to produce H2S by respiring on a(More)
To screen for the predominant bacteria strains distributed in clean rooms and to analyze their phylogenetic relationships. The bacteria distributed in air, surfaces and personnel in clean rooms were routinely monitored using agar plates. Five isolates frequently isolated from the clean rooms of an aseptic pharmaceutical production workshop were selected(More)
Iron–sulfur clusters are one of the most ubiquitous redox centers in biology. Ironically, iron-sulfur clusters are highly sensitive to reactive oxygen species. Disruption of iron-sulfur clusters will not only change the activity of proteins that host iron–sulfur clusters, the iron released from the disrupted iron–sulfur clusters will further promote the(More)
Shewanella are renowned for their ability to respire on a wide range of electron acceptors, which has been partially accredited to the presence of a large number of the c-type cytochromes. In the model species S. oneidensis MR-1, at least 41 genes encode c-type cytochromes that are predicted to be intact, thereby likely functional. Previously, in-frame(More)
IscS plays a principal role in the synthesis of sulfur-containing biomolecules. It is known that the expression of iscS can be negatively regulated by IscR, the first gene product of iscRSUA-hscBA-fdx. What governs the regulation of cysteine desulfurase activity, however, is unknown. Here, we report that IscS from Escherichia coli is able to bind iron with(More)