Learn More
We developed an empirical model to estimate aboveground carbon density with variables derived from airborne Light Detection and Ranging (LiDAR) in tropical seasonal forests in Cambodia, and assessed the effects of LiDAR pulse density on the accurate estimation of aboveground carbon density. First, we tested the applicability of variables used for estimating(More)
In this study, we test and demonstrate the utility of disturbance and recovery information derived from annual Landsat time series to predict current forest vertical structure (as compared to the more common approaches, that consider a sample of airborne Lidar and single-date Landsat derived variables). Mean Canopy Height (MCH) was estimated separately(More)
The objectives of this study are to: (1) evaluate accuracy of tree height measurements of manual stereo viewing on a computer display using digital aerial photographs compared with airborne LiDAR height measurements; and (2) develop an empirical model to estimate stand-level aboveground biomass with variables derived from manual stereo viewing on the(More)
The relationship between the stand parameters (top layer height (H1) and volume/ha (Vha)) and digital number (DN) were evaluated for evergreen conifer stands using three airborne images with 4-m spatial resolution, which were taken in June 1995, September 1993, and October 1994 using the Compact Airborne Spectrographic Imager (CASI). Estimation accuracy of(More)
The performance of visible and near-infrared radiometers was examined for forest stand parameter estimation using airborne images. The images were obtained in September 1993, October 1994 and June 1995 with 4meter spatial resolution using the Compact Airborne Spectrographic Imager (CASI), which had a similar specification as the advanced spaceborne sensors,(More)
  • 1