Gemma Mason

Learn More
We present a model-reduced variational Eulerian integrator for incompressible fluids, which combines the efficiency gains of dimension reduction, the qualitative robustness of coarse spatial and temporal resolutions of geometric integrators, and the simplicity of sub-grid accurate boundary conditions on regular grids to deal with arbitrarily-shaped domains.(More)
Preserving in the discrete realm the underlying geometric, topological, and algebraic structures at stake in partial differential equations has proven to be a fruitful guiding principle for numerical methods in a variety of fields such as elasticity, electromagnetism, or fluid mechanics. However, structure-preserving methods have traditionally used spaces(More)
  • 1