Learn More
BACKGROUND Colour image segmentation is fundamental and critical for quantitative histological image analysis. The complexity of the microstructure and the approach to make histological images results in variable staining and illumination variations. And ultra-high resolution of histological images makes it is hard for image segmentation methods to achieve(More)
Recently compressed sensing (CS) has been applied to under-sampling MR image reconstruction for significantly reducing signal acquisition time. To guarantee the accuracy and efficiency of the CS-based MR image reconstruction, it necessitates determining several regularization and algorithm-introduced parameters properly in practical implementations. The(More)
BACKGROUND Mechanical system with imperfect or misalignment of X-ray phase contrast imaging (XPCI) components causes projection data misplaced, and thus result in the reconstructed slice images of computed tomography (CT) blurred or with edge artifacts. So the features of biological microstructures to be investigated are destroyed unexpectedly, and the(More)
Iterative shrinkage/thresholding algorithms (ISTAs) have recently been proposed to solve linear inverse problems arising in signal and image processing. The convergence rate of ISTAs relies on a scalar known as step size, which is unknown and expensive to compute in practice especially for large-scale problems. Usually a backtracking rule is employed to(More)
The Filtered Back-Projection (FBP) algorithm and its modified versions are the most important techniques for CT (Computerized tomography) reconstruction, however, it may produce aliasing degradation in the reconstructed images due to projection discretization. The general iterative reconstruction (IR) algorithms suffer from their heavy calculation burden(More)
  • 1