Gelsomina Pappalardo

Learn More
[1] More than 130 observation days of the horizontal and vertical extent of Saharan dust intrusions over Europe during the period May 2000 to December 2002 were studied by means of a coordinated lidar network in the frame of the European Aerosol Research Lidar Network (EARLINET). The number of dust events was greatest in late spring, summer, and early(More)
During the eruption of Eyjafjallajökull in April– May 2010 multi-wavelength Raman lidar measurements were performed at the CNR-IMAA Atmospheric Observatory (CIAO), whenever weather conditions permitted observations. A methodology both for volcanic layer identification and accurate aerosol typing has been developed. This methodology relies on the(More)
An intercomparison of aerosol backscatter lidar algorithms was performed in 2001 within the framework of the European Aerosol Research Lidar Network to Establish an Aerosol Climatology (EARLINET). The objective of this research was to test the correctness of the algorithms and the influence of the lidar ratio used by the various lidar teams involved in the(More)
1Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l’Analisi Ambientale (CNR-IMAA), C.da S. Loja, Potenza 85050 Tito Scalo, Italy 2 Science Systems and ApplicationS Inc., c/o NASA Langley Research Center MS 475, Hampton, VA 23681, USA 3Leibniz Institute for Tropospheric Research (IfT), Permoserstraße 15, 04318 Leipzig, Germany 4Gwangju(More)
We have developed a sophisticated Raman lidar numerical model to simulate the performance of two ground-based Raman water-vapor lidar systems. After verifying the model using these ground-based measurements, we then used the model to simulate the water-vapor measurement capability of an airborne Raman lidar under both daytime and nighttime conditions for a(More)
Aerosol observations by lidar in the nocturnal boundary layer (NBL) were performed in Potenza, Southern Italy, from 20 January to 20 February 1997. Measurements during nine winter nights were considered, covering a variety of boundary-layer conditions. The vertical profiles of the aerosol backscattering coefficient at 355 and 723.37 nm were determined(More)
An intercomparison of the algorithms used to retrieve aerosol extinction and backscatter starting from Raman lidar signals has been performed by 11 groups of lidar scientists involved in the European Aerosol Research Lidar Network (EARLINET). This intercomparison is part of an extended quality assurance program performed on aerosol lidars in the EARLINET.(More)
This paper introduces the recent European Aerosol Research Lidar Network (EARLINET) quality-assurance efforts at instrument level. Within two dedicated campaigns and five single-site intercomparison activities, 21 EARLINET systems from 18 EARLINET stations were intercompared between 2009 and 2013. A comprehensive strategy for campaign setup and data(More)
Francesc Rocadenbosch, Ina Mattis, Christine Böckmann, Gelsomina Pappalardo, Jens Bösenberg, Lucas AladosArboledas, Aldo Amodeo, Albert Ansmann, Arnoud Apituley, Dimitris Balis, Anatoly Chaikovsky, Adolfo Comerón, Volker Freudenthaler, Ove Gustafsson, Georg Hansen, Rodanthi-Elisabeth Mamouri, Valentin Mitev, Constantino Muñoz, Doina Nicolae, Alexandros(More)