Learn More
Millimeter wave (mmWave) cellular systems will enable gigabit-per-second data rates thanks to the large bandwidth available at mmWave frequencies. To realize sufficient link margin, mmWave systems will employ directional beamforming with large antenna arrays at both the transmitter and receiver. Due to the high cost and power consumption of gigasample(More)
—This paper describes a least squares (LS) channel estimation scheme for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems based on pilot tones. We first compute the mean square error (MSE) of the LS channel estimate. We then derive optimal pilot sequences and optimal placement of the pilot tones with respect to(More)
—In this paper, we deal with channel estimation for orthogonal frequency-division multiplexing (OFDM) systems. The channels are assumed to be time-varying (TV) and approximated by a basis expansion model (BEM). Due to the time-variation, the resulting channel matrix in the frequency domain is no longer diagonal, but approximately banded. Based on this(More)
—In several applications, such as wideband spectrum sensing for cognitive radio, only the power spectrum (a.k.a. the power spectral density) is of interest and there is no need to recover the original signal itself. In addition, high-rate analog-to-digital converters (ADCs) are too power hungry for direct wideband spectrum sensing. These two facts have(More)
—This paper presents a general framework for space-time codes (STCs) that encompasses a number of recently proposed STC schemes as special cases. The STCs considered are block codes that employ arbitrary redundant linear precoding of a given data sequence together with embedded training symbols, if any. The redundancy introduced by the linear precoding(More)
Solving linear regression problems based on the total least-squares (TLS) criterion has well-documented merits in various applications, where perturbations appear both in the data vector as well as in the regression matrix. However, existing TLS approaches do not account for sparsity possibly present in the unknown vector of regression coefficients. On the(More)
We present a compressive wide-band spectrum sensing scheme for cognitive radios. The received analog signal at the cognitive radio sensing receiver is transformed in to a digital signal using an analog-to-information converter. The autocorrelation of this compressed signal is then used to reconstruct an estimate of the signal spectrum. We evaluate the(More)