Learn More
Here, we report on the identification of nucleolar spindle-associated protein (NuSAP), a novel 55-kD vertebrate protein with selective expression in proliferating cells. Its mRNA and protein levels peak at the transition of G2 to mitosis and abruptly decline after cell division. Microscopic analysis of both fixed and live mammalian cells showed that NuSAP(More)
We have investigated how Wnt and vitamin D receptor signals regulate epidermal differentiation. Many epidermal genes induced by beta-catenin, including the stem cell marker keratin 15, contain vitamin D response elements (VDREs) and several are induced independently of TCF/Lef. The VDR is required for beta-catenin induced hair follicle formation in adult(More)
Nucleolar and spindle-associated protein (NuSAP) was recently identified as a microtubule- and chromatin-binding protein in vertebrates that is nuclear during interphase. Small interfering RNA-mediated depletion of NuSAP resulted in aberrant spindle formation, missegregation of chromosomes, and ultimately blocked cell proliferation. We show here that NuSAP(More)
Our findings that PlGF is a cancer target and anti-PlGF is useful for anticancer treatment have been challenged by Bais et al. Here we take advantage of carcinogen-induced and transgenic tumor models as well as ocular neovascularization to report further evidence in support of our original findings of PlGF as a promising target for anticancer therapies. We(More)
Vascular endothelial growth factor (VEGF)-mediated angiogenesis is an important part of bone formation. To clarify the role of VEGF isoforms in endochondral bone formation, we examined long bone development in mice expressing exclusively the VEGF120 isoform (VEGF120/120 mice). Neonatal VEGF120/120 long bones showed a completely disturbed vascular pattern,(More)
Bone is a highly vascularized tissue, but the function of angiogenesis in bone modeling and remodeling is still poorly defined, and the molecular mechanisms that regulate angiogenesis in bone are only partially elucidated. Genetic manipulations in mice have recently highlighted the critical role of the hypoxia-inducible-factor/vascular endothelial growth(More)
Plasminogen activator inhibitor 1 (PAI-1) is believed to control proteolytic activity and cell migration during angiogenesis. We previously demonstrated in vivo that this inhibitor is necessary for optimal tumor invasion and vascularization. We also showed that PAI-1 angiogenic activity is associated with its control of plasminogen activation but not with(More)
The spindle apparatus is a microtubule (MT)-based machinery that attaches to and segregates the chromosomes during mitosis and meiosis. Self-organization of the spindle around chromatin involves the assembly of MTs, their attachment to the chromosomes, and their organization into a bipolar array. One regulator of spindle self-organization is RanGTP. RanGTP(More)
The combined use of experimental and mathematical models can lead to a better understanding of fracture healing. In this study, a mathematical model, which was originally established by Bailón-Plaza and van der Meulen (J Theor Biol 212:191-209, 2001), was applied to an experimental model of a semi-stabilized murine tibial fracture. The mathematical model(More)
The plasminogen (Plg)/plasminogen activator (PA) system plays a key role in cancer progression, presumably via mediating extracellular matrix degradation and tumor cell migration. Consequently, urokinase-type PA (uPA)/plasmin antagonists are currently being developed for suppression of tumor growth and angiogenesis. Paradoxically, however, high levels of PA(More)