Learn More
Over the past decade, several high value proteins have been produced in different transgenic plant tissues such as leaves, tubers, and seeds. Despite recent advances, many heterologous proteins accumulate to low concentrations, and the optimization of expression cassettes to make in planta production and purification economically feasible remains critical.(More)
Selectable marker genes are indispensable for efficient production of transgenic events, but are no longer needed after the selection process and may cause public concern and technological problems. Although several gene excision systems exist, few have been optimized for vegetatively propagated crops. Using a Cre-loxP auto-excision strategy, we obtained(More)
The regulatory sequences of many genes encoding seed storage proteins have been used to drive seed-specific expression of a variety of proteins in transgenic plants. Because the levels at which these transgene-derived proteins accumulate are generally quite low, we investigated the utility of the arcelin-5 regulatory sequences in obtaining high(More)
We present here a vector system to obtain homozygous marker-free transgenic plants without the need of extra handling and within the same time frame as compared to transformation methods in which the marker is not removed. By introducing a germline-specific auto-excision vector containing a cre recombinase gene under the control of a germline-specific(More)
The orchid Gastrodia elata depends on the fungus Armillaria mellea to complete its life cycle. In the interaction, fungal hyphae penetrate older, nutritive corms but not newly formed corms. From these corms, a protein fraction with in vitro activity against plant-pathogenic fungi has previously been purified. Here, the sequence of gastrodianin, the main(More)
We have investigated whether the expression in Arabidopsis thaliana seeds of a transgene (the Phaseolus vulgaris arcelin (arc)5-I gene) could be enhanced by the simultaneous introduction of an antisense gene for an endogenous seed storage protein (2S albumin). Seeds of plants transformed with both the arc5-I gene and a 2S albumin antisense gene contained(More)
Plant glutamate metabolism (GM) plays a pivotal role in amino acid metabolism and orchestrates crucial metabolic functions, with key roles in plant defense against pathogens. These functions concern three major areas: nitrogen transportation via the glutamine synthetase and glutamine-oxoglutarate aminotransferase cycle, cellular redox regulation, and(More)
Arabidopsis possesses two arginase-encoding genes, ARGAH1 and ARGAH2, catalysing the catabolism of arginine into ornithine and urea. Arginine and ornithine are both precursors for polyamine biosynthetic pathways. We observed an accumulation of ARGAH2 mRNA in Arabidopsis upon inoculation with the necrotrophic pathogen Botrytis cinerea. Transgenic lines(More)
Plants are particularly attractive as large-scale production systems for proteins intended for therapeutical or industrial applications: they can be grown easily and inexpensively in large quantities that can be harvested and processed with the available agronomic infrastructures. The effective use of plants as bioreactors depends on the possibility of(More)
Antibiotic and herbicide resistance genes have been used in transgene technology as powerful selection tools. Nonetheless, once transgenic events have been obtained their presence is no longer needed and can even be undesirable. In this work, we have developed a system to excise the selectable marker and the cre recombinase genes from transgenic banana cv.(More)