Learn More
The germarium, oocytes and embryos of the parthenogenetic viviparous pea aphid Acyrthosiphon pisum are contained within a single ovariole. This species provides an excellent model for studying how maternally-inherited germ plasm is specified and how it is transferred to primordial germ cells. Previous studies have shown that germ cells are first segregated(More)
Among genes that are preferentially expressed in germ cells, nanos and vasa are the two most conserved germline markers in animals. Both genes are usually expressed in germ cells in the adult gonads, and often also during embryogenesis. Both nanos-first or vasa-first expression patterns have been observed in embryos, implying that the molecular networks(More)
In the parthenogenetic and viviparous pea aphid Acyrthosiphon pisum, germline specification depends on the germ plasm localized to the posterior region of the egg chamber before the formation of the blastoderm. During blastulation, germline segregation occurs at the egg posterior, and in early gastrulation germ cells are pushed inward by the invaginating(More)
In situ hybridization has become a powerful tool for detecting the temporal and spatial distribution of gene transcripts in prokaryotes and eukaryotes. We report an efficient protocol for whole-mount identification of the expression of mRNAs in the parthenogenetic pea aphid Acyrthosiphon pisum, an emerging model organism with a growing accumulation of(More)
Germline specification in some animals is driven by the maternally inherited germ plasm during early embryogenesis (inheritance mode), whereas in others it is induced by signals from neighboring cells in mid or late development (induction mode). In the Metazoa, the induction mode appears as a more prevalent and ancestral condition; the inheritance mode is(More)
Formation of the germ plasm drives germline specification in Drosophila and some other insects such as aphids. Identification of the DEAD-box protein Vasa (Vas) as a conserved germline marker in flies and aphids suggests that they share common components for assembling the germ plasm. However, to which extent the assembly order is conserved and the(More)
Hox genes are well known for their key contribution to the establishment of the body architecture. This function relies on both local and long-range cis-regulatory elements that generate nested expression patterns of the various Hox genes along the anterior–posterior axis of the developing embryo. Interestingly, analyses of expression patterns in different(More)
The pea aphid Acyrthosiphon pisum, with a sequenced genome and abundant phenotypic plasticity, has become an emerging model for genomic and developmental studies. Like other aphids, A. pisum propagate rapidly via parthenogenetic viviparous reproduction, where the embryos develop within egg chambers in an assembly-line fashion in the ovariole. Previously we(More)
RNA in situ hybridization (ISH), including chromogenic ISH (CISH) and fluorescent ISH (FISH), has become a powerful tool for revealing the spatial distribution of gene transcripts in model organisms. Previously, we developed a robust protocol for whole-mount RNA CISH in the pea aphid Acyrthosiphon pisum, an emerging insect genomic model. In order to improve(More)
  • 1