Learn More
It is well known that Auxin plays a key role in controlling many aspects of plant growth and development. Crystal structures of Transport inhibitor response 1 (TIR1), a true receptor of auxin, were very recently determined for TIR1 alone and in complexes with auxin and different synthetic analogues and an Auxin/Indole-3-Acetic Acid (Aux/IAA) substrate(More)
Grass weed populations resistant to acetyl-CoA carboxylase-inhibiting (ACCase; EC herbicides represent a major problem for the sustainable development of modern agriculture. In the present study, extensive computational simulations, including homology modeling, molecular dynamics (MD) simulations, and molecular mechanics-Poisson-Boltzmann surface(More)
Hit to lead (H2L) optimization is a key step for drug and agrochemical discovery. A critical challenge for H2L optimization is the low efficiency due to the lack of predictive method with high accuracy. We described a new computational method called Computational Substitution Optimization (CSO) that has allowed us to rapidly identify compounds with(More)
Protoporphyrinogen oxidase (PPO, EC, which has been identified as a significant target for a great family of herbicides with diverse chemical structures, is the last common enzyme responsible for the seventh step in the biosynthetic pathway to heme and chlorophyll. Among the existing PPO inhibitors, diphenyl-ether is the first commercial family of(More)
Protoporphyrinogen IX oxidase (PPO; EC is an essential enzyme catalyzing the last common step in the pathway leading to heme and chlorophyll biosynthesis. Great interest in PPO inhibitors arises from both its significance to agriculture and medicine. However, the discovery of PPO inhibitors with ultrahigh potency and selectivity is hampered due to(More)
Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. In this work, fundamental mechanism of hormone perception by receptor GID1 has been studied by performing computational simulations, revealing a new GA-binding channel of GID1 and a novel hormone perception mechanism involving only one conformational state of GID1.(More)
Glycoside hydrolases Family 1 (GH1) comprises enzymes that can hydrolyze β-O-glycosidic bond from a carbohydrate moiety. The plant GH1 hydrolases participate in a number of developmental processes and stress responses, including cell wall modification, plant hormone activation or deactivation and herbivore resistance. A large number of members has been(More)
In order to foster innovation and improve the effectiveness of drug discovery, there is a considerable interest in exploring unknown 'chemical space' to identify new bioactive compounds with novel and diverse scaffolds. Hence, fragment-based drug discovery (FBDD) was developed rapidly due to its advanced expansive search for 'chemical space', which can lead(More)
Protein and peptide structure predictions are of paramount importance for understanding their functions, as well as the interactions with other molecules. However, the use of molecular simulation techniques to directly predict the peptide structure from the primary amino acid sequence is always hindered by the rough topology of the conformational space and(More)
  • 1