Learn More
Bioactive conformation of drugs is one of the key points for understanding the ligand-receptor interactions. In the present study, by combining density functional theory-based (DFT-based) conformation analysis with quantitative structure-activity relationship analysis (QSAR), we developed successfully a new approach (DFT/QSAR) to carry out bioactive(More)
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4), which has been identified as a significant target for a great family of herbicides with diverse chemical structures, is the last common enzyme responsible for the seventh step in the biosynthetic pathway to heme and chlorophyll. Among the existing PPO inhibitors, diphenyl-ether is the first commercial family of(More)
As the last common enzyme in the biosynthetic pathway leading to heme and chlorophyll, protoporphyrinogen oxidase (PPO; EC 1.3.3.4) is an ideal target for herbicide development. Currently, about 30 PPO inhibitors have been developed as agricultural herbicides. PPO inhibitors have displayed environmentally benign, but advantageous characteristics, including(More)
Drug resistance has become one of the biggest challenges in drug discovery and/or development and has attracted great research interests worldwide. During the past decade, computational strategies have been developed to predict target mutation-induced drug resistance. Meanwhile, various molecular design strategies, including targeting protein backbone,(More)
A critical challenge to the fragment-based drug discovery (FBDD) is its low-throughput nature due to the necessity of biophysical method-based fragment screening. Herein, a method of pharmacophore-linked fragment virtual screening (PFVS) was successfully developed. Its application yielded the first picomolar-range Q(o) site inhibitors of the cytochrome(More)
Protoporphyrinogen oxidase (Protox, EC 1.3.3.4) has attracted great interest during the last decades due to its unique biochemical characteristics and biomedical significance. As a continuation of our research work on the development of new PPO inhibitors, 23 new 1,3,4-thiadiazol-2(3H)-ones bearing benzothiazole substructure were designed and synthesized.(More)
BACKGROUND 4-Hydroxyphenylpyruvate dioxygenase (HPPD) (EC 1.13.11.27) has been identified as one of the most promising target sites for herbicide discovery. To discover novel HPPD inhibitors with high herbicidal activity and improved crop selectivity, a series of novel triketone-containing quinazoline-2,4-dione derivatives possessing a variety of(More)
4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) is one of the most important targets for herbicide discovery. In the search for new HPPD inhibitors with novel scaffolds, triketone-quinoline hybrids were designed and subsequently optimized on the basis of the structure-activity relationship (SAR) studies. Most of the synthesized compounds displayed(More)
4-Hydroxyphenylpyruvate dioxygenase (HPPD), an essential enzyme in tyrosine catabolism, is an important target for treating type I tyrosinemia. Inhibition of HPPD can effectively alleviate the symptoms of type I tyrosinemia. However, only one commercial HPPD inhibitor, 2-(2-nitro-4-trifluoromethylbenzoyl) cyclohexane-1,3-dione (NTBC), has been available for(More)
Exploring novel 4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) inhibitors is one of the most promising research directions in herbicide discovery. To discover new triketone herbicides with broad-spectrum weed control as well as excellent crop selectivity, a series of (total 52) novel triketone-containing quinazoline-2,4-dione derivatives were(More)