Learn More
Two peptides, ProTx-I and ProTx-II, from the venom of the tarantula Thrixopelma pruriens, have been isolated and characterized. These peptides were purified on the basis of their ability to reversibly inhibit the tetrodotoxin-resistant Na channel, Na(V) 1.8, and are shown to belong to the inhibitory cystine knot (ICK) family of peptide toxins interacting(More)
Low-voltage-activated (T-type) calcium channels play a role in diverse physiological responses including neuronal burst firing, hormone secretion, and cell growth. To better understand the biological role and therapeutic potential of the target, a number of structurally diverse antagonists have been identified. Multiple drug interaction sites have been(More)
Cav2.2 channels play a critical role in pain signaling by controlling synaptic transmission between dorsal root ganglion neurons and dorsal horn neurons. The Cav2.2-selective peptide blocker ziconotide (Prialt, Elan Pharmaceuticals, Dublin, Ireland) has proven efficacious in pain relief, but has a poor therapeutic index and requires intrathecal(More)
Voltage-gated calcium channel (Ca(v))2.2 (N-type calcium channels) are key components in nociceptive transmission pathways. Ziconotide, a state-independent peptide inhibitor of Ca(v)2.2 channels, is efficacious in treating refractory pain but exhibits a narrow therapeutic window and must be administered intrathecally. We have discovered an N-triazole(More)
UNLABELLED The purpose of this study was investigation of the potential to isolate mesenchymal stem cells (MSCs) from human umbilical cord blood (UCB) and differentiate them into epithelial cells in mouse skin tissues. Mononuclear cells (MNCs) from UCB (UCB-MNCs) were isolated and induced to MSCs in culture. UCB-MSCs were transfected with pEGFP and labeled(More)
ShK, a peptide isolated from Stichodactyla helianthus venom, blocks the voltage-gated potassium channels, K(v)1.1 and K(v)1.3, with similar high affinity. ShK-Dap(22), a synthetic derivative in which a diaminopropionic acid residue has been substituted at position Lys(22), has been reported to be a selective K(v)1.3 inhibitor and to block this channel with(More)
The voltage-gated calcium channel Ca(v)2.2 (N-type calcium channel) is a critical regulator of synaptic transmission and has emerged as an attractive target for the treatment of chronic pain. We report here the discovery of sulfonamide-derived, state-dependent inhibitors of Ca(v)2.2. In particular, 19 is an inhibitor of Ca(v)2.2 that is selective over(More)
We report the investigation of sulfonamide-derived Cav2.2 inhibitors to address drug-metabolism liabilities with this lead class of analgesics. Modification of the benzamide substituent provided improvements in both potency and selectivity. However, we discovered that formation of the persistent 3-(trifluoromethyl)benzenesulfonamide metabolite was an(More)
Insulin resistance is the key feature of type 2 diabetes and is manifested as attenuated insulin receptor (IR) signaling in response to same levels of insulin binding. Several small molecule IR activators have been identified and reported to exhibit insulin sensitization properties. One of these molecules, TLK19781 (Cmpd1), was investigated to examine its(More)
Biological, genetic, and clinical evidence provide validation for N-type calcium channels (Ca(V)2.2) as therapeutic targets for chronic pain. A state-dependent Ca(V)2.2 inhibitor may provide an improved therapeutic window over ziconotide, the peptidyl Ca(V)2.2 inhibitor used clinically. Supporting this notion, we recently reported that in preclinical(More)