Learn More
Rim1 was previously identified as a Rab3 effector localized to the presynaptic active zone in vertebrates. Here we demonstrate that C. elegans unc-10 mutants lacking Rim are viable, but exhibit behavioral and physiological defects that are more severe than those of Rab3 mutants. Rim is localized to synaptic sites in C. elegans, but the ultrastructure of the(More)
Little is known of mechanisms regulating presynaptic differentiation. We identified rpm-1 in a screen for mutants with defects in patterning of a presynaptic marker at certain interneuronal synapses. The predicted RPM-1 protein contains zinc binding, RCC1, and other conserved motifs. In rpm-1 mutants, mechanosensory neurons fail to accumulate tagged(More)
Sec1-related proteins function in most, if not all, membrane trafficking pathways in eukaryotic cells. The Sec1-related protein required in neurons for synaptic vesicle exocytosis is UNC-18. Several models for UNC-18 function during vesicle exocytosis are under consideration. We have tested these models by characterizing unc-18 mutants of the nematode(More)
Rab small GTPases are involved in the transport of vesicles between different membranous organelles. RAB-3 is an exocytic Rab that plays a modulatory role in synaptic transmission. Unexpectedly, mutations in the Caenorhabditis elegans RAB-3 exchange factor homologue, aex-3, cause a more severe synaptic transmission defect as well as a defecation defect not(More)
Caenorhabditis elegans TOM-1 is orthologous to vertebrate tomosyn, a cytosolic syntaxin-binding protein implicated in the modulation of both constitutive and regulated exocytosis. To investigate how TOM-1 regulates exocytosis of synaptic vesicles in vivo, we analyzed C. elegans tom-1 mutants. Our electrophysiological analysis indicates that evoked(More)
BACKGROUND Antibodies are critical tools in many avenues of biological research. Though antibodies can be produced in the research laboratory setting, most research labs working with vertebrates avail themselves of the wide array of commercially available reagents. By contrast, few such reagents are available for work with model organisms. (More)
Active zone proteins play a fundamental role in regulating neurotransmitter release and defining release sites. The functional roles of active zone components are beginning to be elucidated; however, the mechanisms of active zone protein localization are unknown. Studies have shown that glutamine, leucine, lysine, and serine-rich protein (ELKS), a recently(More)
Rim is a multi-domain, active zone protein that regulates exocytosis and is implicated in vesicle priming and presynaptic plasticity. We recently demonstrated that synaptic defects associated with loss of Caenorhabditis elegans Rim (termed UNC-10) are accompanied by a reduction in docked vesicles adjacent to the presynaptic density. Since Rim is known to(More)
In vivo pathways of natural retinoid metabolism and elimination have not been well characterized in primary myeloid cells, even though retinoids and retinoid receptors have been strongly implicated in regulating myeloid maturation. With the use of a upstream activation sequence-GFP reporter transgene and retrovirally expressed Gal4-retinoic acid receptor α(More)