Gavin D. Merrifield

Learn More
Functional magnetic resonance imaging (fMRI) is a powerful method for exploring emotional and cognitive brain responses in humans. However rodent fMRI has not previously been applied to the analysis of learned behaviour in awake animals, limiting its use as a translational tool. Here we have developed a novel paradigm for studying brain activation in awake(More)
White matter (WM) abnormalities, possibly resulting from hypoperfusion, are key features of the aging human brain. It is unclear, however, whether in vivo magnetic resonance imaging (MRI) approaches, such as diffusion tensor and magnetization transfer MRI are sufficiently sensitive to detect subtle alterations to WM integrity in mouse models developed to(More)
Hypertension is linked with an increased risk of white matter hyperintensities; however, recent findings have questioned this association. We examined whether hypertension and additional cerebrovascular risk factors impacted on white matter integrity in an inducible hypertensive rat. No white matter hyperintensities were observed on magnetic resonance(More)
Manganese (Mn(2+))-enhanced magnetic resonance (MR) imaging (MEMRI) in rodents offers unique opportunities for the longitudinal study of hippocampal structure and function in parallel with cognitive testing. However, Mn(2+) is a potent toxin and there is evidence that it can interfere with neuronal function. Thus, apart from causing adverse peripheral side(More)
We evaluated the use of kt-broad-use linear acquisition speed-up technique (kt-BLAST) acceleration of mouse cardiac imaging in order to reduce scan times, thereby minimising physiological variation and improving animal welfare. Conventional cine cardiac MRI data acquired from healthy mice (n = 9) were subsampled to simulate kt-BLAST acceleration.(More)
PURPOSE To investigate the water diffusion tensor properties of ex vivo tissue in the fibroid uterus, including the influence of degeneration, and the relevance of the principal eigenvector orientation to the underlying tissue structure. MATERIALS AND METHODS Following hysterectomy, high-resolution structural T(2) -weighted and diffusion tensor magnetic(More)
Increasing scientific interest in the zebrafish as a model organism across a range of biomedical and biological research areas raises the need for the development of in vivo imaging tools appropriate to this subject. Development of the embryonic and early stage forms of the subject can currently be assessed using optical based techniques due to the(More)
  • 1