Learn More
To enable clinical use of parallel transmission technology, it is necessary to rapidly produce transmit sensitivity (σ) maps. Actual flip angle imaging is an efficient mapping technique, which is accurate when used with 3D encoding and nonselective RF pulses. Mapping single slices is quicker, but 2D encoding leads to systematic errors due to slice profile(More)
RNA interference (RNAi) is being widely explored as a means of tumour therapy due to the specific and potent silencing of targeted genes. However, in vivo delivery of RNAi effectors, such as small interfering RNA (siRNA) and detection of delivery is fraught with problems. Here, we describe novel theranostic PEGylated siRNA nanoparticles termed(More)
Convection enhanced delivery (CED) is a method of direct injection to the brain that can achieve widespread dispersal of therapeutics, including gene therapies, from a single dose. Non-viral, nanocomplexes are of interest as vectors for gene therapy in the brain, but it is essential that administration should achieve maximal dispersal to minimise the number(More)
Non-viral vector formulations comprise typically complexes of nucleic acids with cationic polymers or lipids. However, for in vivo applications cationic formulations suffer from problems of poor tissue penetration, non-specific binding to cells, interaction with serum proteins and cell adhesion molecules and can lead to inflammatory responses. Anionic(More)
The efficient targeted delivery of nucleic acids in vivo provides some of the greatest challenges to the development of genetic therapies. We aim to develop nanocomplex formulations that achieve targeted transfection of neuroblastoma tumours that can be monitored simultaneously by MRI. Here, we have compared nanocomplexes comprising self-assembling mixtures(More)
We have synthesized a bimodal lipidic molecule bearing both fluorophore and contrast agent signatures on the same structure in order to create a robust bimodal liposome for both magnetic resonance imaging (MRI) and fluorescence microscopy utility. The dual-modality concept considered in the synthesis of this new paramagnetic and fluorescent lipid is(More)
UNLABELLED Myocardial hypoxia is an attractive target for diagnostic and prognostic imaging, but current approaches are insufficiently sensitive for clinical use. The PET tracer copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) ((64)Cu-ATSM) has promise, but its selectivity and sensitivity could be improved by structural modification. We have therefore(More)
Gadolinium-labelled nanocomplexes offer prospects for the development of real-time, non-invasive imaging strategies to visualise the location of gene delivery by MRI. In this study, targeted nanoparticle formulations were prepared comprising a cationic liposome (L) containing a Gd-chelated lipid at 10, 15 and 20% by weight of total lipid, a(More)
In most healthy mammalian cells an uneven distribution of the mixture of the phospholipid species that make up the bilayer cell membrane is maintained between inner and outer layers: anionic species (principally phosphatidylserine, PS) are arranged largely on the inner layer. 1 In some abnormal cells this is not the case and a considerable amount of anionic(More)
Bisphosphonates (BPs) Magnetic resonance imaging (MRI) Preclinical imaging Fluorinated bisphosphonate A B S T R A C T 19 F-magnetic resonance imaging (MRI) is a promising technique that may allow us to measure the concentration of exogenous fluorinated imaging probes quantitatively in vivo. Here, we describe the synthesis and characterisation of a novel(More)