Learn More
Members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family are known to influence development, angiogenesis, coagulation and progression of arthritis. As proteinases their substrates include the von Willebrand factor precursor and extracellular matrix components such as procollagen, hyalectans (hyaluronan-binding(More)
OBJECTIVE To profile the messenger RNA (mRNA) expression for the 23 known genes of matrix metalloproteinases (MMPs), 19 genes of ADAMTS, 4 genes of tissue inhibitors of metalloproteinases (TIMPs), and ADAM genes 8, 10, 12, and 17 in normal, painful, and ruptured Achilles tendons. METHODS Tendon samples were obtained from cadavers or from patients(More)
Repetitive strain or 'overuse' is thought to be a major factor contributing to the development of tendinopathy. The aims of our study were to develop a novel cyclic loading system, and use it to investigate the effect of defined loading conditions on the mechanical properties and gene expression of isolated tendon fascicles. Tendon fascicles were dissected(More)
Several members of the ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin motifs) family have been identified as aggrecanases, whose substrates include versican, the principal large proteoglycan in the tendon extracellular matrix. We have characterized the expression of ADAMTS-4 in human Achilles tendon and tendon-derived cells. ADAMTS-4 mRNA(More)
Tendinopathies are a range of diseases characterised by degeneration and chronic tendon pain and represent a significant cause of morbidity. Relatively little is known about the underlying mechanisms; however onset is often associated with physical activity. A number of molecular changes have been documented in tendinopathy such as a decrease in overall(More)
In the tank bioleaching process, maximising solid loading and mineral availability, the latter through decreasing particle size, are key to maximising metal extraction. In this study, the effect of particle size distribution on bioleaching performance and microbial growth was studied through applying knowledge based on medical geology research to understand(More)
The ion-molecule reaction NH(3)(+) + ND(3) has been studied at various collision energies (1 to 5 electron volts in the center of mass) with preparation of the NH(3)(+) reagent in two nearly isoenergetic vibrational states. One state corresponds to pure out-of-plane bending of the planar NH(3)(+) ion (0.60 electron volts), whereas the other state is a(More)
  • 1