Gautier Stoll

Learn More
We describe herein a computationally intensive project aimed at carrying out molecular dynamics (MD) simulations including water and counterions on B-DNA oligomers containing all 136 unique tetranucleotide base sequences. This initiative was undertaken by an international collaborative effort involving nine research groups, the "Ascona B-DNA Consortium"(More)
Antitumor immunity driven by intratumoral dendritic cells contributes to the efficacy of anthracycline-based chemotherapy in cancer. We identified a loss-of-function allele of the gene coding for formyl peptide receptor 1 (FPR1) that was associated with poor metastasis-free and overall survival in breast and colorectal cancer patients receiving adjuvant(More)
The therapeutic efficacy of anthracyclines relies, at least partially, on the induction of a dendritic cell- and T-lymphocyte-dependent anticancer immune response. Here, we show that anthracycline-based chemotherapy promotes the recruitment of functional CD11b(+)CD11c(+)Ly6C(high)Ly6G(-)MHCII(+) dendritic cell-like antigen-presenting cells (APC) into the(More)
Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to validate a network that describes biological observations and predict the effect of perturbations. This article presents an algorithm for modeling biological networks in a discrete framework with continuous time. There exist two major types of(More)
Ewing sarcoma is the second most frequent pediatric bone tumor. In most of the patients, a chromosomal translocation leads to the expression of the EWS-FLI1 chimeric transcription factor that is the major oncogene in this pathology. Relative genetic simplicity of Ewing sarcoma makes it particularly attractive for studying cancer in a systemic manner.(More)
MOTIVATION The ability of cells to complete mitosis with high fidelity relies on elaborate checkpoint mechanisms. We study S- and M-phase checkpoint responses in silico in the budding yeast with a stochastic dynamical model for the cell-cycle. We aim to provide an unbiased functional classification of network interactions that reflect the contribution of(More)
BACKGROUND A wide range of techniques is now available for analyzing regulatory networks. Nonetheless, most of these techniques fail to interpret large-scale transcriptional data at the post-translational level. RESULTS We address the question of using large-scale transcriptomic observation of a system perturbation to analyze a regulatory network which(More)
Public repositories of biological pathways and networks have greatly expanded in recent years. Such databases contain many pathways that facilitate the analysis of high-throughput experimental work and the formulation of new biological hypotheses to be tested, a fundamental principle of the systems biology approach. However, large-scale molecular maps are(More)
We study the dynamics of gene activities in relatively small size biological networks (up to a few tens of nodes), e.g., the activities of cell-cycle proteins during the mitotic cell-cycle progression. Using the framework of deterministic discrete dynamical models, we characterize the dynamical modifications in response to structural perturbations in the(More)