Learn More
Future mainstream microprocessors will likely integrate specialized accelerators, such as GPUs, onto a single die to achieve better performance and power efficiency. However, it remains a keen challenge to program such a heterogeneous multicore platform, since these specialized accelerators feature ISAs and functionality that are significantly different(More)
We present a FPGA-synthesizable version of the Intel Nehalem processor core, synthesized, partitioned and mapped to a multi-FPGA emulation system consisting of Xilinx Virtex-4 and Virtex-5 FPGAs. To our knowledge, this is the first time a modern state-of-the-art x86 design with the out-of-order micro-architecture is made FPGA synthesizable and capable of(More)
Moore's Law and the drive towards performance efficiency have led to the on-chip integration of general-purpose cores with special-purpose accelerators. Pangaea is a heterogeneous CMP design for non-rendering workloads that integrates IA32 CPU cores with non-IA32 GPU-class multi-cores, extending the current state-of-the-art CPU-GPU integration that(More)
Microprocessor design is undergoing a major paradigm shift towards multi-core designs, in anticipation that future performance gains will come from exploiting threadlevel parallelism in the software. To support this trend, we present a novel processor architecture called the Multiple Instruction Stream Processing (MISP) architecture. MISP introduces the(More)
While the out-of-order engine has been the mainstream micro-architecture-design paradigm to achieve high performance, Transmeta took a different approach using dynamic binary translation (BT). To enable detailed comparison of these two radically different processor-design approaches, it is natural to leverage well-established simulation-based methodologies.(More)
In this paper, we introduce Bothnia, an extension to the Intel production graphics driver to support a shared virtual memory heterogeneous multithreading programming model. With Bothnia, the Intel graphics device driver can support both the traditional 3D graphics rendering software stack and a new class of heterogeneous multithreaded applications, which(More)
The Multiple Instruction Stream Processor (MISP) architecture introduces the sequencer as a new class of architectural resource, and provides a minimalist user-level MIMD instruction set extension for application programs to directly control execution of concurrent instruction streams on these sequencers. As with classic architectural resources, namely,(More)
  • 1