Learn More
The polyhedral model is a well developed formalism and has been extensively used in a variety of contexts viz. the automatic parallelization of loop programs, program verification, locality, hardware generationand more recently, in the automatic reduction of asymptotic program complexity. Such analyses and transformations rely on certain closure properties.(More)
— Speech recognition is the process of converting an acoustic waveform into the text similar to the information being conveyed by the speaker. In this paper implementation of isolated words and connected words Automatic Speech Recognition system (ASR) for the words of Hindi language will be discussed. The HTK (hidden markov model toolkit) based on Hidden(More)
Many computations can be modeled with systems of affine recurrence equations (SAREs) over polyhedral domains. We study the problem of scheduling individual computations of an SARE in the presence of reductions i.e., operations specifying the accumulation of a set of values to produce a single value. Reductions involve a commutative and associative operator(More)
In this letter, we present a simple one-step, versatile, scalable chemical vapor deposition (CVD)-based process for the encapsulation and stabilization of a host of single or multicomponent supramolecular assemblies (proteoliposomes, microbubbles, lipid bilayers, and photosynthetic antennae complexes and other biological materials) to form functional hybrid(More)
BACKGROUND There is a paucity of data on the relative importance of various traditional risk factors for coronary artery disease among rural Indians. We conducted a prospective case-control study to determine the risk factors for acute myocardial infarction in a rural population of central India. METHODS We recruited 111 consecutive patients admitted to(More)
State-of-the-art photovoltaics use high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high-temperature crystal growth processes. We demonstrate a solution-based hot-casting technique to grow continuous, pinhole-free thin films of organometallic perovskites with millimeter-scale crystalline grains. We fabricated(More)
Ultrathin molybdenum disulphide (MoS2) has emerged as an interesting layered semiconductor because of its finite energy bandgap and the absence of dangling bonds. However, metals deposited on the semiconducting 2H phase usually form high-resistance (0.7 kΩ μm-10 kΩ μm) contacts, leading to Schottky-limited transport. In this study, we demonstrate that the(More)
A mixed integer linear program is presented for deterministically scheduling departure aircraft at runways. The method addresses different schemes of managing the departure queuing area by treating it as first-in-first-out queues or as a simple parking area, where any available aircraft can takeoff irrespective of its relative sequence with others. The(More)
Three-dimensional organic-inorganic perovskites have emerged as one of the most promising thin-film solar cell materials owing to their remarkable photophysical properties, which have led to power conversion efficiencies exceeding 20 per cent, with the prospect of further improvements towards the Shockley-Queisser limit for a single‐junction solar cell(More)
The polyhedral model is now a well established and effective formalism for program optimization and parallelization. However, finding optimal transformations is a long-standing open problem. It is therefore important to develop tools that, rather than following prede-fined optimization criteria, allow practitioners to explore different choices through(More)