Gaspar Armelles

Learn More
Surface-plasmon-mediated confinement of optical fields holds great promise for on-chip miniaturization of all-optical circuits 1-4 • Following successful demonstrations of passive nanoplasmonic devices s-7 , active plasmonic systems have been designed to control plasmon propagation. This goal has been achieved either by coupling plasmons to optically active(More)
Surface plasmon resonance (SPR)-based biosensors are established tools for measuring biomolecular interactions between unlabeled analytes in real time, and are thus an ideal method to evaluate G protein-coupled receptor (GPCR) binding interactions. Using as a vehicle lentiviral particles bearing the chemokine receptor CXCR4 in its native plasma membrane(More)
The characteristics of a novel magneto-optic surface-plasmon-resonance (MOSPR) sensor and its use for the detection of biomolecules are presented. This physical transduction principle is based on the combination of the magneto-optic activity of magnetic materials and a surface-plasmon resonance of metallic layers. Such a combination can produce a sharp(More)
Radiative corrections to the polarizability tensor of isotropic particles are fundamental to understand the energy balance between absorption and scattering processes. Equivalent radiative corrections for anisotropic particles are not well known. Assuming that the polarization within the particle is uniform, we derived a closed-form expression for the(More)
Metal-dielectric Au-Co-SiO(2) magnetoplasmonic nanodisks are found to exhibit large magneto-optical activity and low optical losses. The internal architecture of the nanodisks is such that, in resonant conditions, the electromagnetic field undertakes a particular spatial distribution. This makes it possible to maximize the electromagnetic field at the(More)
In this Letter we show that nanostructures made out of pure noble metals can exhibit measurable magneto-optic activity at low magnetic fields. This phenomenon occurs when the localized surface plasmon resonance of the nanostructure is excited in the presence of a static magnetic field parallel to the propagation of incident light. The large magneto-optical(More)
We study how the magneto-optical activity in polar configuration of continuous Au/Co/Au trilayers is affected by the excitation of localized plasmon resonances of an array of Au nanodiscs fabricated on top of them over a dielectric SiO(2) spacer. We show that the effect of the nanodiscs array is twofold. First, it optimizes the absorption of light at(More)
We report that the effect of an external magnetic field on the propagation of surface plasmons can be effectively modified through the coupling between localized (LSP) and propagating (SPP) surface plasmons. When these plasmon modes do not interact, the main effect of the magnetic field is a modification of the wavevector of the SPP mode, leaving the LSP(More)
We demonstrate femtosecond plasmonic interferometry with a novel geometry. The plasmonic microinterferometer consists of a tilted slit-groove pair. This arrangement allows for (i) interferometric measurements at a single wavelength with a single microinterferometer and (ii) unambiguous discrimination between changes in real and imaginary parts of the metal(More)