Learn More
The ability to selectively disrupt gene function remains a critical element in elucidating information regarding gene essentiality for bacterial growth and/or pathogenesis. In this study, we adapted a tet regulatory expression system for use in Staphylococcus aureus, with the goal of downregulating gene expression via induction of antisense RNA. We(More)
Comprehensive genomic analysis of the important human pathogen Staphylococcus aureus was achieved by a strategy involving antisense technology in a regulatable gene expression system. In addition to known essential genes, many genes of unknown or poorly defined biological function were identified. This methodology allowed gene function to be characterized(More)
The growth kinetics of Helicobacter pylori after it has been exposed to amoxicillin have been investigated in conjunction with studies of cell morphology. A potent bactericidal effect was observed at concentrations 10-fold higher than the MIC, but this was accompanied by an increase in the residual numbers of coccoid forms observed. In the presence of 10(More)
Peptides show much promise as potent and selective drug candidates. Fusing peptides to a scaffold monoclonal antibody produces a conjugated antibody which has the advantages of peptide activity yet also has the pharmacokinetics determined by the scaffold antibody. However, the conjugated antibody often has poor binding affinity to antigens that may be(More)
IL-17A is a pro-inflammatory cytokine that has been implicated in autoimmune and inflammatory diseases. Monoclonal antibodies inhibiting IL-17A signaling have demonstrated remarkable efficacy, but an oral therapy is still lacking. A high affinity IL-17A peptide antagonist (HAP) of 15 residues was identified through phage-display screening followed by(More)
Using a comprehensive set of discovery and optimization tools, antibodies were produced with the ability to neutralize SARS coronavirus (SARS-CoV) infection in Vero E6 cells and in animal models. These anti-SARS antibodies were discovered using a novel DNA display method, which can identify new antibodies within days. Once neutralizing antibodies were(More)
  • 1