Learn More
Directed movement is a characteristic of many living organisms and occurs as a result of the transformation of chemical energy into mechanical energy. Myosin is one of three families of molecular motors that are responsible for cellular motility. The three-dimensional structure of the head portion of myosin, or subfragment-1, which contains both the actin(More)
Carbamoyl phosphate synthetase catalyzes the production of carbamoyl phosphate from bicarbonate, glutamine, and two molecules of MgATP. As isolated from Escherichia coli, the enzyme has a total molecular weight of approximately 160K and consists of two polypeptide chains referred to as the large and small subunits. Here we describe the X-ray crystal(More)
The soil-dwelling microbe, Pseudomonas sp. strain CBS-3, has attracted recent attention due to its ability to survive on 4-chlorobenzoate as its sole carbon source. The biochemical pathway by which this organism converts 4-chlorobenzoate to 4-hydroxybenzoate consists of three enzymes: 4-chlorobenzoyl-CoA ligase, 4-chlorobenzoyl-CoA dehalogenase, and(More)
Aspartoacylase catalyzes hydrolysis of N-acetyl-l-aspartate to aspartate and acetate in the vertebrate brain. Deficiency in this activity leads to spongiform degeneration of the white matter of the brain and is the established cause of Canavan disease, a fatal progressive leukodystrophy affecting young children. We present crystal structures of recombinant(More)
The structure of rabbit muscle pyruvate kinase crystallized as a complex with Mg2+, K+, and L-phospholactate (L-P-lactate) has been solved and refined to 2.7 A resolution. The crystals, grown from solutions of polyethylene glycol 8000 at pH 7.5, belong to the space group P2(1) and have unit cell parameters a = 144.4 A, b = 112.6 A, c = 171.2 A, and beta =(More)
The structure of the UDP-glucose pyrophosphorylase encoded by Arabidopsis thaliana gene At3g03250 has been solved to a nominal resolution of 1.86 Angstroms. In addition, the structure has been solved in the presence of the substrates/products UTP and UDP-glucose to nominal resolutions of 1.64 Angstroms and 1.85 Angstroms. The three structures revealed a(More)
The molecular structure of the cytochrome c2, isolated from the purple photosynthetic bacterium Rhodobacter capsulatus, has been solved to a nominal resolution of 2.5 A and refined to a crystallographic R-factor of 16.8% for all observed X-ray data. Crystals used for this investigation belong to the space group R32 with two molecules in the asymmetric unit(More)
X-ray crystallography typically uses a single set of coordinates and B factors to describe macromolecular conformations. Refinement of multiple copies of the entire structure has been previously used in specific cases as an alternative means of representing structural flexibility. Here, we systematically validate this method by using simulated diffraction(More)
The three-dimensional structure of an apolipoprotein isolated from the African migratory locust Locusta migratoria has been determined by X-ray analysis to a resolution of 2.5 A. The overall molecular architecture of this protein consists of five long alpha-helices connected by short loops. As predicted from amino acid sequence analyses, these helices are(More)
Here we describe the three-dimensional structure of 4-chlorobenzoyl-CoA dehalogenase from Pseudomonas sp. strain CBS-3. This enzyme catalyzes the hydrolysis of 4-chlorobenzoyl-CoA to 4-hydroxybenzoyl-CoA. The molecular structure of the enzyme/4-hydroxybenzoyl-CoA complex was solved by the techniques of multiple isomorphous replacement, solvent flattening,(More)