Gary Virshup

Learn More
We discovered an empirical relationship between the logarithm of mean excitation energy (ln Im) and the effective atomic number (EAN) of human tissues, which allows for computing patient-specific proton stopping power ratios (SPRs) using dual-energy CT (DECT) imaging. The accuracy of the DECT method was evaluated for 'standard' human tissues as well as(More)
PURPOSE This work studies the clinical utility of dual energy (DE) subtraction fluoroscopy for fiducial-free tumor tracking in lung radiation therapy (RT). Improvement in tumor visualization and quantification of tumor shift within a breathing cycle were analyzed. METHODS Twenty subjects who were undergoing RT for lung cancer were recruited following(More)
The purpose of this study was to analyze factors affecting proton stopping-power-ratio (SPR) estimations and range uncertainties in proton therapy planning using the standard stoichiometric calibration. The SPR uncertainties were grouped into five categories according to their origins and then estimated based on previously published reports or measurements.(More)
PURPOSE Electronic portal imagers (EPIDs) with high detective quantum efficiencies (DQEs) are sought to facilitate the use of the megavoltage (MV) radiotherapy treatment beam for image guidance. Potential advantages include high quality (treatment) beam's eye view imaging, and improved cone-beam computed tomography (CBCT) generating images with more(More)
PURPOSE Detector lag, or residual signal, in a-Si flat-panel (FP) detectors can cause significant shading artifacts in cone-beam computed tomography reconstructions. To date, most correction models have assumed a linear, time-invariant (LTI) model and correct lag by deconvolution with an impulse response function (IRF). However, the lag correction is(More)
PURPOSE For portal imaging, high DQE detectors can be constructed from thick pixelated scintillator arrays that absorb MV x-rays. However, due to beam divergence, MTF and DQE losses can be significant for off-axis elements not focused towards the source. We present a novel focusing approach based on situating a shaped fiber optic plate (FOP) between(More)
PURPOSE Thick pixilated scintillators can offer significant improvements in quantum efficiency over phosphor screen megavoltage (MV) detectors. However spatial resolution can be compromised due to the spreading of light across pixels within septa. Of particular interest are the lower energy x-ray photons and associated light photons that produce higher(More)
The goal of this study was to evaluate the improvement in electron density measurement and metal artifact reduction using orthovoltage computed tomography (OVCT) imaging compared with conventional kilovoltage CT (KVCT). For this study, a bench-top system was constructed with adjustable x-ray tube voltage up to 320 kVp. A commercial tissue-characterization(More)
Conventional kilovoltage (kV) x-ray-based dual-energy CT (DECT) imaging using two different x-ray energy spectra is sensitive to image noise and beam hardening effects. The purpose of this study was to evaluate the theoretical advantage of the DECT method for determining proton stopping power ratios (SPRs) using a combination of kV and megavoltage (MV)(More)
PURPOSE Detector lag, or residual signal, in amorphous silicon (a-Si) flat-panel (FP) detectors can cause significant shading artifacts in cone-beam computed tomography (CBCT) reconstructions. To date, most correction models have assumed a linear, time-invariant (LTI) model and lag is corrected by deconvolution with an impulse response function (IRF).(More)