Gary T. Elliott

Learn More
PURPOSE Bendamustine has shown clinical activity in patients with disease refractory to conventional alkylator chemotherapy. The purpose of this study was to characterize the mechanisms of action of bendamustine and to compare it with structurally related compounds. EXPERIMENTAL DESIGN Bendamustine was profiled in the National Cancer Institute in vitro(More)
Preconditioning with monophosphoryl lipid A (MLA) protects rabbit hearts from prolonged ischemic reperfusion injury by a mechanism involving inducible nitric oxide synthase (iNOS) activation. This study was undertaken to determine whether MLA also could precondition rat hearts in a similar manner. Rats were injected with two different doses of MLA (300(More)
We studied whether monophosphoryl lipid A (MLA), an endotoxin derivative, protected the heart from planned ischemia in hypercholesterolemic conscious rabbits. Normal and hypercholesterolemic (8-week exposure to 1.5% cholesterol-enriched diet) conscious rabbits with right ventricular electrode and left ventricular polyethylene catheters were subjected to(More)
We examined the in vitro preconditioning effect of non-toxic derivative of endotoxin, monophosphoryl lipid A (MLA) in adult rat cardiac myocytes. Cultured 5-7-day-old myocytes were preconditioned for 4 h by treatment with 200 ng/ml MLA. Twenty h later, cells were subjected to simulated ischemia by incubation in 0.75 mm sodium hydrosulfite, 12 mM KCl, 20 mM(More)
The cardioprotective effect of myocardial preconditioning (PC) to reduce infarct size has been shown to last approximately 90 min (early PC), and then a second window of protection (SWOP or late PC) appears 24 h later. Although much work has been done to characterize early PC, little has been done to investigate potential mediators of SWOP. To that end, we(More)
Both ischemic preconditioning and pretreatment with the endotoxin derivative monophosphoryl lipid A (MLA) protect the heart against infarction, yet the cellular mechanisms responsible for the cardioprotection achieved with either intervention are unknown. Using pentobarbital-anesthetized dogs, we tested the hypothesis that increased activity of(More)
The purpose of this study was to evaluate the protective effect of a new endotoxin analogue, monophosphoryl lipid A (MLA) in a rabbit model of myocardial ischemia/reperfusion and to show if this protection was mediated via synthesis of 70 kDa heat shock protein (HSP 70). Three groups of New Zealand White rabbits underwent 30 min coronary occlusion, followed(More)
Multiple myeloma is characterized by increased osteoclast activity that results in bone destruction and lytic lesions. With the prolonged overall patient survival achieved by new treatment modalities, additional drugs are required to inhibit bone destruction. We focused on a novel and more potent structural analog of the nonsteroidal anti-inflammatory drug(More)
Using the concept that exposing a cell to an adverse environment (stress) results in the stimulation of its endogenous defense system, hearts have been adapted to ischemia by exposing them to diverse stresses. Recently, 24-h pretreatment of monophosphoryl lipid A (MLA), a chemically modified derivative of endotoxin, was found to render the hearts more(More)
OBJECTIVES Monophosphoryl lipid A (MLA), a detoxified derivative of the lipid A portion of the endotoxin molecule, given as a pretreatment 24 h prior to cardiac ischemia/reperfusion reduces myocardial stunning and infarction in dogs. This study was undertaken to evaluate the ability of MLA pretreatment to reduce infarct size in a rabbit model of in situ(More)