Learn More
Land plants are sessile and have developed sophisticated mechanisms that allow for both immediate and acclimatory responses to changing environments. Partial exposure of low light-adapted Arabidopsis plants to excess light results in a systemic acclimation to excess excitation energy and consequent photooxidative stress in unexposed leaves. Thus, plants(More)
Exposure of Arabidopsis plants that were maintained under low light (200 mumol of photons m-2 sec-1) to excess light (2000 mumol of photons m-2 sec-1) for 1 hr caused reversible photoinhibition of photosynthesis. Measurements of photosynthetic parameters and the use of electron transport inhibitors indicated that a novel signal transduction pathway was(More)
Glutathione (GSH), a major antioxidant in most aerobic organisms, is perceived to be particularly important in plant chloroplasts because it helps to protect the photosynthetic apparatus from oxidative damage. In transgenic tobacco plants overexpressing a chloroplast-targeted ␥-glutamylcysteine synthetase (␥-ECS), foliar levels of GSH were raised threefold.(More)
The mutant regulator of APX2 1-1 (rax1-1) was identified in Arabidopsis thaliana that constitutively expressed normally photooxidative stress-inducible ASCORBATE PEROXIDASE2 (APX2) and had >/=50% lowered foliar glutathione levels. Mapping revealed that rax1-1 is an allele of gamma-GLUTAMYLCYSTEINE SYNTHETASE 1 (GSH1), which encodes chloroplastic(More)
Analysis of the oxidative processes taking place during fruit ripening in a salad tomato variety (Lycopersicon esculentum Mill. cv. Ailsa Craig) revealed changes in oxidative and antioxidative parameters. Hydrogen peroxide content, lipid peroxidation and protein oxidation were measured as indices of oxidative processes and all were found to increase at the(More)
A second glutathione reductase (GR) cDNA has been cloned and sequenced from pea (Pisum sativum L. cv. Birte). This new GR cDNA (GOR2) does not encode a pre-protein with a transit peptide and therefore is most likely to represent a cytosolic GR. It is significantly different at the DNA level from the previously cloned chloroplastidial/mitochondrial pea GR(More)
Most plant-microbe interactions do not result in disease; natural products restrict non-host pathogens. We found that sulforaphane (4-methylsulfinylbutyl isothiocyanate), a natural product derived from aliphatic glucosinolates, inhibits growth in Arabidopsis of non-host Pseudomonas bacteria in planta. Multiple sax genes (saxCAB/F/D/G) were identified in(More)
When low-light-grown Arabidopsis rosettes are partially exposed to excess light (EL), the unexposed leaves become acclimated to excess excitation energy (EEE) and consequent photo-oxidative stress. This phenomenon, termed systemic acquired acclimation (SAA), is associated with redox changes in the proximity of photosystem II, changes in foliar H2O2 content(More)
Most chloroplast and mitochondrial proteins are synthesized with N-terminal presequences that direct their import into the appropriate organelle. In this report we have analyzed the specificity of standard in vitro assays for import into isolated pea chloroplasts and mitochondria. We find that chloroplast protein import is highly specific because(More)
N-terminal presequences from cDNAs encoding mitochondrion- or chloroplast-specific proteins are able, with variable efficiencies, to target preproteins to their respective organelles. In the few cases studied in which a nuclear-encoded protein is found in both these organelles, each compartment-specific isoform is encoded by a separate gene. Glutathione(More)