Gary M. Lovett

Learn More
ecological change (Reid et al. 2005). Through habitat conversion, over-consumption of resources, and worldwide introductions of pests and pathogens, humans are causing species extinctions at a record rate: the sixth extinction crisis in the billion-year history of eukaryotic life on Earth (Eldridge 1998). The loss of a common or abundant foundation species(More)
Nitrogen availability may be a major factor structuring ectomycorrhizal fungal communities. Atmospheric nitrogen (N) deposition has been implicated in the decline of ectomycorrhizal fungal (EMF) sporocarp diversity. We previously characterized the pattern of decreased sporocarp species richness over an anthropogenic N deposition gradient in Alaska (USA). To(More)
Recent projections of climatic change have focused a great deal of scientific and public attention on patterns of carbon (C) cycling as well as its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric carbon dioxide (CO2). Net ecosystem production (NEP), a central concept in C-cycling research, has(More)
To investigate the influence of individual tree species on nitrogen (N) cycling in forests, we measured key characteristics of the N cycle in small single-species plots of five dominant tree species in the Catskill Mountains of New York State. The species studied were sugar maple (Acer saccharum), American beech (Fagus grandifolia), yellow birch (Betula(More)
Spatial patterns of atmospheric deposition across the northeastern United States were evaluated and summarized in a simple model as a function of elevation and geographic position within the region. For wet deposition, 3-11 yr of annual concentration data for the major ions in precipitation were obtained from the National Atmospheric Deposition(More)
Leaching losses of nitrate from forests can have potentially serious consequences for soils and receiving waters. In this study, based on extensive sampling of forested watersheds in the Catskill Mountains of New York State, we examine the relationships among stream chemistry, the properties of the forest floor, and the tree species composition of(More)
Defoliation of forests by insects is often assumed to produce a pulse of available nitrogen (N) from the decomposition of frass pellets. In this study we measured rates of carbon (C) and N mineralization from gypsy moth frass incubated with and without soil, and for soil alone. Incubations were at constant temperature and soil moisture conditions and lasted(More)
The Catskill Mountains of southeastern New York receive relatively high rates of atmospheric N deposition, and NO3 concentrations in some streams have increased dramatically since the late 1960s. We measured the chemistry of 39 firstand second-order streams with forested watersheds to determine the variability of nitrogen concentrations within the Catskill(More)
Sodium and chloride concentrations and export increased from 1986 to 2005 in a rural stream in southeastern New York. Concentrations increased 1.5 mg/L per year (chloride) and 0.9 mg/L per year (sodium), and export increased 33,000 kg/year (chloride) and 20,000 kg/year (sodium) during this period. We estimate that salt used for deicing accounted for 91% of(More)
Watersheds within the Catskill Mountains, New York, receive among the highest rates of nitrogen (N) deposition in the northeastern United States and are beginning to show signs of N saturation. Despite similar amounts of N deposition across watersheds within the Catskill Mountains, rates of soil N cycling and N retention vary significantly among stands of(More)