Gary M. Carter

Learn More
We have measured the timing jitter for dispersion-managed solitons in a recirculating loop for distances up to 20,000 km. The data were obtained with modulated data, 2(7) - 1 and 2(23) - 1 pseudorandom binary sequence patterns, at 10-Gbit/s rates and with an unmodulated pulse train at 10 GHz. We have obtained good agreement with our data, using a filtered(More)
The authors have derived a receiver model that provides an explicit relationship between the factor and the optical signal-to-noise ratio (OSNR) in optical fiber communication systems for arbitrary pulse shapes, realistic receiver filters, and arbitrarily polarized noise. It is shown how the system performance depends on both the degree of polarization of(More)
We investigate the polarization evolution for both signal and noise in two 107-km recirculating loops with polarization-dependent loss per round-trip of 0.35 dB and less than 0.1 dB, respectively. When the system is optimized, in the first case, both signal and noise are polarized, while in the second case, the signal tends to depolarize due to the noise.(More)
Using a recirculating loop, we measured nonlinearly induced timing jitter in a terrestrial wavelength-division-multiplexed system at different transmission distances with different amounts of precompensation. Within each 600-GHz subband, we achieved error-free transmission using the same amount of precompensation for all channels at all distances up to 5000(More)
Due to the temporal drift of the fiber birefringence in an optical fiber transmission system, the polarization mode dispersion (PMD) effects measured in a time window can be quite different for different time windows of the same duration. Every 10 s for 10 days, the accumulated differential group delay (DGD) was repeatedly measured at 5000 km in a 107-km(More)
Rayleigh scattering generates intensity noise close to an optical carrier that propagates in a single-mode optical fiber. This noise degrades the performance of optoelectronic oscillators and RF-photonic links. When using a broad linewidth laser, we previously found that the intensity noise power scales linearly with optical power and fiber length, which is(More)
Optoelectronic oscillators (OEOs) are hybrid RF-photonic devices that promise to be environmentally robust high-frequency RF sources with very low phase noise. Previously, we showed that Rayleigh-scattering-induced noise in optical fibers coupled with amplitude-to-phase noise conversion in photodetectors and amplifiers leads to fiber-length-dependent noise(More)
We have demonstrated for the first time to our knowledge, the conversion of 10 Gb/s non-return-to-zero (NRZ) on-off keying (NRZ-OOK) to RZ-OOK using cross-phase modulation (XPM) in a compact, Silicon (Si) nanowire and a detuned filter. The pulse format conversion resulted in a polarity-preserved, correctly-coded RZ-OOK signal, with no evidence of an(More)
Optoelectronic oscillators (OEOs) are promising sources of low phase noise radio frequency (RF) signals. However, at X-band frequencies, the long optical fiber delay line required for a high oscillator Q also leads to spurious modes (spurs) spaced too narrowly to be filtered by RF filters. The dual injection-locked OEO (DIL-OEO) has been proposed as a(More)
We discuss possible sources for the experimentally-observed length-dependent phase noise in opto-electronic oscillators. We eliminate several possibilities and show that conversion of laser amplitude noise to phase noise is a likely candidate.