Learn More
Copper ions are too small to elicit an immune response. Therefore, copper was conjugated to carrier proteins using S-2-(4-isothiocyanatobenzyl)-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid, a bifunctional chelator, to make artificial antigens for copper. Several mice were immunized, and monoclonal antibodies (MAbs) against chelated copper(More)
This thesis describes a novel approach for distributing low skew clock signals across large digital systems independent of environmental and process variations. The technique is integrated into a multi-output clock buffer circuit that can handle a scalable number of clock loads in a point-to-point configuration. The circuit contains an impedance-locked loop(More)
Peptide ligands are used to increase the specificity of drug carriers to their target cells and to facilitate intracellular delivery. One method to identify such peptide ligands, phage display, enables high-throughput screening of peptide libraries for ligands binding to therapeutic targets of interest. However, conventional methods for identifying target(More)
It is well appreciated that delivery of therapeutic agents through the pulmonary route could provide significant improvement in patient compliance and reduce systemic toxicity for a variety of diseases. Many inhalable drug formulations suffer from low respirable fractions, rapid clearance by alveolar macrophages, target non-specificity, and difficulty in(More)
This paper describes and evaluates a compiler transformation that improves the performance of parallel programs on Network-of-Workstation (NOW) sharedmemory multiprocessors. The transformation overlaps the communication time resulting form non-local memory accesses with the computation time in parallel loops to effectively hide the latency of the remote(More)
Engineered human T-cells are a promising therapeutic modality for cancer immunotherapy. T-cells expressing chimeric antigen receptors combined with additional genes to enhance T-cell proliferation, survival, or tumor targeting may further improve efficacy but require multiple stable gene transfer events. Methods are therefore needed to increase production(More)
We propose and demonstrate a new optical trapping method for single cells that utilizes modulated light fields to trap a wide array of cell types, including mammalian, yeast, and Escherichia coli cells, on the surface of a two-dimensional photonic crystal. This method is capable of reducing the required light intensity, and thus minimizing the photothermal(More)
Sensory stimulation leads to structural changes within the CNS (Central Nervous System), thus providing the fundamental mechanism for learning and memory. The olfactory circuit offers a unique model for studying experience-dependent plasticity, partly due to a continuous supply of integrating adult born neurons. Our lab has recently implemented an olfactory(More)