Gary E. Lyons

Learn More
We have analysed by in situ hybridization the expression of myf-5, the murine homologue of the human myogenic regulatory sequence myf5, during embryogenesis in the mouse. myf-5 sequences were first detected in the earliest somites (from about 8 days p.c.) in the dermomyotome, before formation of the dermatome, myotome and sclerotome. The dermomyotome is(More)
MyoD1 and myogenin are muscle-specific proteins which can convert non-myogenic cells in culture to differentiated muscle fibres, implicating them in myogenic determination. The pattern of expression of MyoD1 and myogenin during the early stages of muscle formation in the mouse embryo in vivo and in limb-bud explants cultured in vitro, indicates that they(More)
The Ezh2 protein endows the Polycomb PRC2 and PRC3 complexes with histone lysine methyltransferase (HKMT) activity that is associated with transcriptional repression. We report that Ezh2 expression was developmentally regulated in the myotome compartment of mouse somites and that its down-regulation coincided with activation of muscle gene expression and(More)
Members of the MEF2 family of transcription factors bind a conserved A/T-rich sequence in the control regions of many skeletal and cardiac muscle genes. To begin to assess the roles of the different Mef2 genes in the control of muscle gene expression in vivo, we analyzed by in situ hybridization the expression patterns of the Mef2a, Mef2c and Mef2d genes(More)
We employed the yeast two-hybrid technique to screen a mouse embryo cDNA library for novel tissue-specific Class B basic helix-loop-helix (bHLH) transcription factors, which heterodimerize with the ubiquitously expressed Class A bHLH protein E12. From this screen, we cloned a novel bHLH protein, which we named eHAND. Its low sequence identity with other(More)
To analyze the transcriptional regulatory mechanisms of the myoD gene, we generated transgenic mice bearing a lacZ gene driven by a 6-kb 5'-flanking sequence of the mouse myoD gene including a proximal regulatory region (PRR) and a distal regulatory region (DRR), which are sufficient for activation of muscle-specific transcription in vitro. The expression(More)
Members of the basic helix-loop-helix (bHLH) family of transcription factors have been shown to regulate growth and differentiation of numerous cell types. Cell-type-specific bHLH proteins typically form heterodimers with ubiquitous bHLH proteins, such as E12, and bind a DNA consensus sequence known as an E-box. We used the yeast two-hybrid system to screen(More)
The spatial and temporal expression pattern of the muscle regulatory gene Myf-6 (MRF4/herculin) has been investigated by in situ hybridization during embryonic and fetal mouse development. Here, we report that the Myf-6 gene shows a biphasic pattern of expression. Myf-6 transcripts are first detected in the most rostral somites of the mouse embryo at 9 d of(More)
Down syndrome (DS), a major cause of mental retardation, is characterized by subtle abnormalities of cortical neuroanatomy, neurochemistry and function. Recent work has shown that chromosome band 21q22 is critical for many of the neurological phenotypes of DS. A gene, DSCAM (Down syndrome cell adhesion molecule), has now been isolated from chromosome band(More)
The nuclear factor I (NFI) family of site-specific DNA-binding proteins is required for both the cell-type specific transcription of many viral and cellular genes and for the replication of adenovirus DNA. Although binding sites for NFI proteins within the promoters of several tissue-specific genes have been shown to be essential for their expression, it is(More)