Gary D. Stormo

Learn More
MOTIVATION Molecular biologists frequently can obtain interesting insight by aligning a set of related DNA, RNA or protein sequences. Such alignments can be used to determine either evolutionary or functional relationships. Our interest is in identifying functional relationships. Unless the sequences are very similar, it is necessary to have a specific(More)
The regulatory map of a genome consists of the binding sites for proteins that determine the transcription of nearby genes. An initial regulatory map for S. cerevisiae was recently published using six motif discovery programs to analyze genome-wide chromatin immunoprecipitation data for 203 transcription factors. The programs were used to identify sequence(More)
The purpose of this article is to provide a brief history of the development and application of computer algorithms for the analysis and prediction of DNA binding sites. This problem can be conveniently divided into two subproblems. The first is, given a collection of known binding sites, develop a representation of those sites that can be used to search(More)
Repressors, polymerases, ribosomes and other macromolecules bind to specific nucleic acid sequences. They can find a binding site only if the sequence has a recognizable pattern. We define a measure of the information (R sequence) in the sequence patterns at binding sites. It allows one to investigate how information is distributed across the sites and to(More)
Cilia and flagella are microtubule-based structures nucleated by modified centrioles termed basal bodies. These biochemically complex organelles have more than 250 and 150 polypeptides, respectively. To identify the proteins involved in ciliary and basal body biogenesis and function, we undertook a comparative genomics approach that subtracted the(More)
MOTIVATION Discovery of regulatory motifs in unaligned DNA sequences remains a fundamental problem in computational biology. Two categories of algorithms have been developed to identify common motifs from a set of DNA sequences. The first can be called a 'multiple genes, single species' approach. It proposes that a degenerate motif is embedded in some or(More)
The ability to determine important features within DNA sequences from the sequences alone is becoming essential as large-scale sequencing projects are being undertaken. We present a method that can be applied to the problem of identifying the recognition pattern for a DNA-binding protein given only a collection of sequenced DNA fragments, each known to(More)
We describe the comprehensive characterization of homeodomain DNA-binding specificities from a metazoan genome. The analysis of all 84 independent homeodomains from D. melanogaster reveals the breadth of DNA sequences that can be specified by this recognition motif. The majority of these factors can be organized into 11 different specificity groups, where(More)
In Drosophila, the neuropeptide pigment-dispersing factor (PDF) is required to maintain behavioral rhythms under constant conditions. To understand how PDF exerts its influence, we performed time-series immunostainings for the PERIOD protein in normal and pdf mutant flies over 9 d of constant conditions. Without pdf, pacemaker neurons that normally express(More)
Systematic gene expression analyses provide comprehensive information about the transcriptional response to different environmental and developmental conditions. With enough gene expression data points, computational biologists may eventually generate predictive computer models of transcription regulation. Such models will require computational(More)