Learn More
High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array including about 90,000 gene-associated SNPs and used it to(More)
Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human(More)
The rate at which nonsynonymous single nucleotide polymorphisms (nsSNPs) are being identified in the human genome is increasing dramatically owing to advances in whole-genome/whole-exome sequencing technologies. Automated methods capable of accurately and reliably distinguishing between pathogenic and functionally neutral nsSNPs are therefore assuming(More)
We have developed a computer based method to identify candidate single nucleotide polymorphisms (SNPs) and small insertions/deletions from expressed sequence tag data. Using a redundancy-based approach, valid SNPs are distinguished from erroneous sequence by their representation multiple times in an alignment of sequence reads. A second measure of validity(More)
Interspecific crosses contribute significantly to plant evolution enabling gene exchanges between species. The efficiency of interspecific crosses depends on the similarity between the implicated genomes as high levels of genome similarity are required to ensure appropriate chromosome pairing and genetic recombination. Brassica napus (AACC) is an(More)
Allopolyploidy, which involves genome doubling of an interspecific hybrid is an important mechanism of abrupt speciation in flowering plants [1-6]. Recent studies show that allopolyploid formation is accompanied by extensive changes to patterns of parental gene expression ("transcriptome shock") [7-15] and that this is likely the consequence of(More)
UNLABELLED AutoSNP is a program to detect single nucleotide polymorphisms (SNPs) and insertion/deletion polymorphisms (indels) in expressed sequence tag (EST) data. The program uses d2cluster and cap3 to cluster and align EST sequences, and uses redundancy to differentiate between candidate SNPs and sequence errors. Candidate polymorphisms are identified as(More)
Over 3.5 million expressed sequence tags from the major cereal taxa were used to electronically mine over 176,000 putative single nucleotide polymorphisms (SNPs). The density, distribution and degree of linkage between these SNPs were compared among the different taxa. The frequency of sequence polymorphism was lowest in diploid taxa (rice, barley and(More)
Grain development, germination and plant development under abiotic stresses are areas of biology that are of considerable interest to the cereal community. Within the Investigating Gene Function programme we have produced the resources required to investigate alterations in the transcriptome of hexaploid wheat during these developmental processes. We have(More)
Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of(More)