Learn More
Prolonged use of video display terminals (VDTs) has been shown to be a risk factor for musculoskeletal and visual discomfort. A standard workplace design recommendation is to position the centre of the VDT 15 degrees below horizontal eye level. Recently a viewing angle of 40 degrees below horizontal has been suggested based on studies that have indicated(More)
Biomechanical models of the spine have traditionally assumed that workplace lifting conditions (weight, posture, motion, etc.) precisely dictate the magnitude of individual muscle forces necessary to maintain a biomechanical balance within the trunk. However, because there are a large number of muscle groups within the trunk there is also an infinite number(More)
Appropriate visual display terminal (VDT) location is a subject of ongoing debate. Generally, visual strain is associated with higher placement, and musculoskeletal strain is associated with lower placement. Seeking resolution of the debate, this paper provides a comparison of results from previous lab-based monitor placement studies to recommendations and(More)
An experiment was performed to determine the reaction of the trunk muscles, using electromyography, and intra-abdominal pressure to components of trunk loading commonly seen in the workplace during manual materials handling. These components included angular trunk velocity, trunk position in three-dimensional space and trunk torque exertion level. The(More)
Electromyography (EMG) and normalized EMG have been accepted as methods of quantifying the activity level of a muscle. Normalized EMG, in conjunction with the EMG/force relationship and muscle cross-sectional area data, allows researchers to estimate the amount of muscle force exerted across a joint. An accurate description of this muscle force is a(More)
A limited number of studies have focused on computer-use-related MSDs in college students, though risk factor exposure may be similar to that of workers who use computers. This study examined computer use patterns of college students, and made comparisons to a group of previously studied computer-using professionals. 234 students completed a web-based(More)
Industrial assembly tasks often require awkward, sustained neck and/or shoulder postures that can lead to increased musculoskeletal discomfort and reduced productivity. The aim of this study was to investigate the effects of mirror and periscope visual aids as ergonomic interventions designed to eliminate awkward postures of the cervicobrachial region(More)
Repetitive, high-force pinch grip exertions are common in many occupational activities. The goal of the current study was to quantify the relationship between lateral pinch grip span (distance between thumb and index finger) and lateral pinch grip strength. An experiment was conducted in which 40 participants performed maximal lateral pinch grip exertions(More)
Obesity in the workforce is a growing problem worldwide. While the implications of this trend for biomechanical loading of the musculoskeletal system seem fairly straightforward, the evidence of a clear link between low back pain (LBP) and body mass index (BMI) (calculated as whole body mass in kilograms divided by the square of stature in meters) has not(More)
An understanding of how the support mechanisms of the spine behave during lifting may yield insight into the loading of the spine under occupational conditions and help shed light on the etiology of low-back disorders. Previous controlled laboratory studies of spinal loadings have been limited to isometric and isokinetic conditions. To evaluate the behavior(More)