Garth J. S. Cooper

Learn More
High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However, our understanding of the molecular mechanisms that cause the marked distal pathology is incomplete. We performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN. We integrated proteomics and(More)
Heart disease is the major cause of death in diabetes, a disorder characterized by chronic hyperglycemia and cardiovascular complications. Although altered systemic regulation of transition metals in diabetes has been the subject of previous investigation, it is not known whether changed transition metal metabolism results in heart disease in common forms(More)
The prevalence, and associated healthcare burden, of diabetes mellitus is increasing worldwide. Mortality and morbidity are associated with diabetic complications in multiple organs and tissues, including the eye, kidney and cardiovascular system, and new therapeutics to treat these complications are required urgently. Triethylenetetramine (TETA) is one(More)
BACKGROUND Adiponectin is an adipokine possessing beneficial effects on obesity-related medical complications. A negative association of adiponectin levels with breast cancer development has been demonstrated. However, the precise role of adiponectin deficiency in mammary carcinogenesis remains elusive. METHODOLOGY/PRINCIPAL FINDINGS In the present study,(More)
OBJECTIVE This study examines the extent to which the contractile deficit of diabetic cardiomyopathy is due to altered Ca(2+) homeostasis. RESEARCH DESIGN AND METHODS Measurements of isometric force and intracellular calcium ([Ca(2+)](i), using fura-2/AM) were made in left ventricular (LV) trabeculae from rats with streptozotocin-induced diabetes and(More)
BACKGROUND Heart disease is the leading cause of death in diabetic patients, and defective copper metabolism may play important roles in the pathogenesis of diabetic cardiomyopathy (DCM). The present study sought to determine how myocardial copper status and key copper-proteins might become impaired by diabetes, and how they respond to treatment with the Cu(More)
Heart disease is the major cause of death in diabetes, a disorder characterized by chronic hyperglycemia and cardiovascular complications. Diabetic cardiomyopathy (DCM) is increasingly recognized as a major contributor to diastolic dysfunction and heart failure in diabetes, but its molecular basis has remained obscure, in part because of its multifactorial(More)
OBJECTIVE Aggregation of human amylin/islet amyloid polypeptide (hA/hIAPP) into small soluble beta-sheet-containing oligomers is linked to islet beta-cell degeneration and the pathogenesis of type 2 diabetes. Here, we used tetracycline, which modifies hA/hIAPP oligomerization, to probe mechanisms whereby hA/hIAPP causes diabetes in hemizygous(More)
BACKGROUND Defective copper regulation is implicated as a causative mechanism of organ damage in diabetes. Treatment with trientine, a divalent-copper-selective chelator, improves arterial and renal structure/function in diabetes, wherein it also ameliorates left-ventricular (LV) hypertrophy. However, direct in vivo evidence that trientine can improve(More)
BACKGROUND Intracellular calcium (Ca²⁺) coordinates the cardiac contraction cycle and is dysregulated in diabetic cardiomyopathy. Treatment with triethylenetetramine (TETA), a divalent-copper-selective chelator, improves cardiac structure and function in patients and rats with diabetic cardiomyopathy, but the molecular basis of this action is uncertain.(More)