Learn More
Secondary structure prediction involving up to 800 neural network predictions has been developed, by use of novel methods such as output expansion and a unique balloting procedure. An overall performance of 77.2%-80.2% (77.9%-80.6% mean per-chain) for three-state (helix, strand, coil) prediction was obtained when evaluated on a commonly used set of 126(More)
A low resolution solution structure of the IIA domain of the Bacillus subtilis phosphoenolpyruvate-sugar phosphotransferase system (PTS) glucose permease has been determined using 945 inter-residue and 724 intra-residue distance constraints derived from three-dimensional 15N and 13C edited NOESY spectra. A total of 15 structures was generated using distance(More)
The three-dimensional solution structure of reduced (CuI) plastocyanin from French bean leaves has been determined by distance geometry and restrained molecular dynamics methods using constraints obtained from 1H n.m.r. (nuclear magnetic resonance) spectroscopy. A total of 1244 experimental constraints were used, including 1120 distance constraints, 103(More)
The three-dimensional solution structure of a zinc finger nucleic acid binding motif has been determined by nuclear magnetic resonance (NMR) spectroscopy. Spectra of a synthetic peptide corresponding to a single zinc finger from the Xenopus protein Xfin yielded distance and dihedral angle constraints that were used to generate structures from distance(More)
The three-dimensional solution structure of reduced (dithiol) thioredoxin from Escherichia coli has been determined with distance and dihedral angle constraints obtained from 1H NMR spectroscopy. Reduced thioredoxin has a well-defined global fold consisting of a central five-strand beta-sheet and three long helices. The beta-strands are packed in the sheet(More)
The solution conformation of plastocyanin from the green alga Scenedesmus obliquus has been determined from distance and dihedral angle constraints derived by nuclear magnetic resonance (NMR) spectroscopy. Structures were generated with distance geometry and restrained molecular dynamics calculations. A novel molecular replacement method was also used with(More)
Two complementary approaches for systematic search in torsion angle space are described for the generation of all conformations of polypeptides which satisfy experimental NMR restraints, hard-sphere van der Waals radii, and rigid covalent geometry. The first procedure is based on a recursive, tree search algorithm for the examination of linear chains of(More)
The linear pentapeptide, Ala-Tyr-cis-Pro-Tyr-Asp-NMA (AYPYD) is known to have a significant population of type VI turn conformers in aqueous solvent. We have carried out theoretical studies of the conformational energetics of this peptide using a potential of mean force (PMF) consisting of the AMBER/OPLS empirical potential energy function, a macroscopic(More)
The accommodation of Mg2+ in the N-terminal domain of calmodulin was followed through amide 1H and 15N chemical shifts and line widths in heteronuclear single-quantum coherence spectroscopy NMR spectra. Mg2+ binds sequentially to the two Ca2+-binding loops in this domain, with affinities such that nearly half of the loops would be occupied by Mg2+ in(More)
Blood coagulation is initiated by Ca(2+)-dependent binding of coagulation factor VIIa (FVIIa) to its cofactor, tissue factor (TF). The TF:FVIIa complex activates factors IX and X, ultimately leading to the formation of thrombin and the coagulation of blood. FVII consists of an N-terminal gamma-carboxyglutamic-acid-containing (Gla) domain followed by two(More)